跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:巫哲嘉
研究生(外文):Jhe-JiaWu
論文名稱:監控多階段系統製程品質管制圖之探討與研究
論文名稱(外文):A Study on Control Charts for Monitoring and Controlling the Process Quality of Multistage Systems
指導教授:潘浙楠潘浙楠引用關係
指導教授(外文):Jeh-Nan Pan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:多階段系統殘差指數加權移動平均殘差累和整體平均串長度
外文關鍵詞:multistage manufacturing systemresidual EWMA control chartresidual CUSUM control chartoverall average run length
相關次數:
  • 被引用被引用:1
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
統計製程管制(Statistical Process Control, SPC)技術是監控產品及製程品質特性的重要方法。隨著現代科技的發展日趨複雜且精密,工業界多數的產品均須經過多個階段的製造流程後,才能順利完成。例如半導體製造、印刷電路板、化學工業、航太工業、電信產業等許多工業領域之製程,皆屬多階段製造系統之範疇。在半導體工業中,金屬氧化物半導體場效電晶體 (Metal Oxide Semiconductor Field Effect Transistor, MOSFET),是一種可以廣泛使用在類比電路與數位電路的場效電晶體。在金屬氧化物半導體場效電晶體的製程中,許多關鍵製程都與矽氧化層品質有關,又鑒於上述高科技製程的品質特性常具有自我相關的性質。若我們直接利用傳統的管制圖來監控自我相關製程的處理方式並不恰當。近十多年來在品質學者們的努力下,已發展出加權移動平均(Exponentially Weighted Moving Average) EWMA管制圖、累和(Cumulative Sum) CUSUM管制圖等適合偵測自我相關製程平均變動的管制圖。由於傳統的統計製程管制(SPC)在監控與改進產品品質的方法上,通常僅針對單一階段的製程進行監控與改善。因此如何建構一個有效監控多階段系統產品品質之管制圖實有其必要性。
在考慮多階段製程的情況下,本研究擬先利用新的多變項線性迴歸模型來描述跨階段製程的相關性,再利用各階段模型的殘差建構殘差EWMA管制圖、殘差卡方管制圖及殘差CUSUM(Cumulative Sum)管制圖。此外,本研究將以整體平均串長度(Overall Average Run Length)的想法作為各種多階段殘差管制圖偵測能力之評估與比較基準。
最後,我們將以一個三階段矽晶圓氧化層厚度量測資料為例來進行數值實例的驗證與說明,研究結果可推廣至一般多階段系統製程品質的監控上。
With the advent of modern technology, manufacturing processes have become very sophisticated; most industries require multiple process stages to complete their final products. In this research, we develop a new control chart model suitable for monitoring the process quality of multi-stage manufacturing systems. Considering the correlation often occurs among various stages in a manufacturing system, we first propose a new multiple linear regression model to describe their relationship. Then, the multistage residual EWMA and CUSUM control charts as well as the residual χ^2 control charts are used to monitor the overall process quality of multistage systems. In addition, an overall average run length (OARL) concept is adopted to compare the detecting performance for various control charts. Finally, a numerical example with oxide thickness measurements of three-stage Silicon Wafer measured at different manufacturing stages in semiconductor industry is given to demonstrate the usefulness of our proposed multistage residual control charts. Hopefully, the results of this research can be served as a useful guideline for monitoring the process quality of multistage systems.
目錄
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 5
第二章 文獻之回顧與探討 7
2.1 多階段系統 7
2.2 多階段系統的製程監控與改善 8
2.3 自我相關製程之管制圖 10
2.3.1 EWMA管制圖 11
2.3.2 CUSUM 管制圖 15
第三章 多階段系統模型與管制圖之建立 18
3.1 多階段系統模型的建立 18
3.2 多階段系統自我相關殘差管制圖之建立 21
3.2.1 多階段系統殘差EWMA管制圖 21
3.2.2 多階段系統之殘差CUSUM管制圖 22
3.3 管制圖偵測效果評估標準之制定 23
3.3.1 整體平均串長度合理性評估與機率分配之推導 23
3.4 多階段系統殘差EWMA管制圖偵測能力之模擬分析 25
3.4.1 當多階段製程呈現穩定狀態下OIARL值之選取 25
3.4.2 當多階段製程脫離管制狀態下OOARL值之比較 26
3.5 多階段系統殘差CUSUM管制圖偵測能力之模擬分析 29
3.5.1 當多階段製程呈現穩定狀態下OIARL值之選取 29
3.5.2 當多階段製程脫離管制狀態下OOARL值之比較 29
3.6多階段系統殘差 χ^2 (1) 管制圖 32
3.6.1 多階段系統殘差 χ^2 (1) 管制圖偵測能力之模擬分析 32
3.6.2 當多階段製程呈現穩定狀態下OIARL值之選取 33
3.6.3 當多階段製程脫離管制狀態下OOARL值之比較 34
3.7 型Ⅰ誤差 α 的膨脹與修正 34
3.8多階段系統殘差 χ^2 (W)管制圖 36
3.8.1 多階段系統殘差 χ^2 (W) 管制圖偵測能力之模擬分析 37
3.8.2 當多階段製程呈現穩定狀態下 〖ARL〗_0 值之選取 37
3.8.3 當多階段製程脫離管制狀態下 〖ARL〗_1 值之比較 38
3.9 階段數對多階段系統管制圖 α 之敏感度分析 39
3.9.1 階段數對多階段系統EWMA管制圖 α 之敏感度分析 39
3.9.2 階段數對多階段系統CUSUM管制圖 α 之敏感度分析 42
3.9.3 階段數對多階段系統 χ^2 (1) 管制圖 α 之敏感度分析 44
3.9.4 階段數對多階段系統 χ^2 (W) 管制圖 α 之敏感度分析 47
第四章 數值實例分析 50
4.1 傳統EWMA與多階段系統殘差EWMA管制圖之比較分析 50
4.2 傳統CUSUM與多階段系統殘差CUSUM管制圖之比較分析 54
4.3 多階段系統殘差管制圖與傳統EWMA與CUSUM管制圖之比較 58
第五章 結論與未來研究之方向 59
5.1 結論 59
5.2未來研究方向 59
參考文獻 61
參考文獻
Asadzadeh, S. and Aghaie, A. (2012). Improving the Product Reliability in Multistage Manufacturing and Service Operations. Quality and Reliability Engineering International, 28(4): 397-407.
Asadzadeh, S., Aghaie, A. and Shahriari, H. (2013). Cause-Selecting Charts Based on Proportional Hazards and Binary Frailty Models. International Journal of Industrial Engineering and Production Research, 24(2): 107-112.
Asadzadeh, S., Aghaie, A., Shahriari, H. and Niaki, S.T.A. (2015). Improving Reliability in Multistage Processes with Autocorrelated Observations. Quality Technology and Quantitative Management, 12(2): 143-157.
Asadzadeh, S., Aghaie, A. and Yang, S.F. (2008). Monitoring and Diagnosing Multistage Process: A Review of Cause Selecting Control Charts. Journal of Industrial and Systems Engineering, 2(3): 214-235.
Crowder, S.V. (1987a). A Simple Method for Studying Run-Length Distributions of Exponentially Weighted Moving Average Charts. Technometrics, 29(4): 401-407.
Crowder, S.V. (1987b). Average Run Lengths of Exponentially Weighted Moving Average Control Charts. Journal of Quality Technology, 19(3): 161-164.
Crowder, S.V. (1989). Design of Exponential Weighted Moving Average Schemes. Journal of Quality Technology, 21(3): 155-162.
Gan, F.F. (1991). An Optimal Design of CUSUM Quality Control Charts. Journal of Quality Technology, 23(4): 279-286.
Goldsmith, P.L. and Whitefield, H. (1961). Average Run Lengths in Cumulative Chart Quality Control Schemes. Technometrics, 3(1): 11-20.
Harris, T.J. and Ross, W.H. (1991). Statistical Process Control Procedure for Correlated Observations. Canadian Journal of Chemical Engineering, 69(1): 48-57.
Hawkins, D.M. (1991). Multivariate Quality Control Based on Regression-Adjusted Variables. Technometrics, 33(1): 61-75.
Hawkins, D.M. (1993a). Cumulative Sum Control Charting: An Underutilized SPC Tool. Quality Engineering, 5(3): 463-477.
Hawkins, D.M. (1993b). Regression Adjustment for Variables in Multivariate Quality Control. Journal of Quality Technology, 25(3): 170-182.
Hunter, J.S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4): 203-210.
Liu, J. (2010.) Variation Reduction for Multistage Manufacturing Processes: A Comparison Survey of Statistical-Process-Control vs Stream-of-Variation Methodologies. Quality and Reliability Engineering International, 26(7): 645-661.
Lowry, C.A. and Montgomery, D.C. (1995). A Review of Multivariate Control Charts. IIE Transactions, 27(6): 800-810.
Lu, C.W. and Reynolds, M.R. (1999). EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes. Journal of Quality Technology, 31(2): 166-188.
Lu, C.W. and Reynolds, M.R. (2001). CUSUM Charts for Monitoring An Autocorrelated Processes. Journal of Quality Technology, 33(3): 66-81.
Lucas, J.M. and Saccucci, M.S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1): 1-29.
Montgomery, D.C. (2008). Introduction to Statistical Quality Control, 6^th Ed., Wiley, New York.
Montgomery, D.C. and Mastrangelo, C.M. (1991). Some Statistical Process Control Methods for Autocorrelated Data. Journal of Quality Technology, 23(3): 179-204.
Page, E.S. (1961). Cumulative Sum Charts. Technometrics, 3(1): 1-9.
Palm, A.C., Rodriguez, R.N., Spiring, F.A. and Wheeler, D.J. (1997). Some Perspectives and Challenges for Control Chart Methods. Journal of Quality Technology, 29(2): 122-127.
Rao, S., Strojwas, A.J., Lehoczky, J.P. and Schervish, M.J. (1996). Monitoring Multistage Integrated Circuit Fabrication Processes. IEEE Transactions on Semiconductor Manufacturing, 9(4): 495-505.
Roberts, S.W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 42(1): 239-250.
Robinson, P.B. and Ho, T.Y. (1978). Average Run Lengths of Geometric Moving Average Charts by Numerical Methods. Technometrics, 20(1): 85-93.
Shang, Y.F., Tsung, F.G. and Zou, C.L. (2013). Statistical Process Control for Multistage Processes with Binary Outputs. IIE Transactions, 45(9): 1008-1023.
Shi, J.J. and Zhou, S.Y. (2009). Quality Control and Improvement for Multistage Systems: A Survey. IIE Transactions, 41(9): 744-753.
Stoumbos, Z.G., Reynolds, M.R., Ryan, T.P. and Woodall, W.H. (2000). The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 95(451): 992-998.
Tsung, F. and Xiang, L. (2004). Multistage Process Control and Monitoring Via Group EWMA Schemes. Institute of Electrical and Electronic Engineers, 2: 1087-1092.
Wei, William. W.S. (2005). Time Series Analysis: Univariate and Multivariate Methods, 2nd Ed., Pearson Education, Inc.
Woodall, W.H. and Montgomery D.C. (1999). Research Issues and Ideas in Statistical Process Control. Journal of Quality and Technology, 31(2): 376-386.
Wyckoff, D.D. (1984). New Tools for Achieving Service Quality. Cornell Hotel and Restaurant Administration Quarterly, 25(3): 78-91.
Yang, S.F. (2013). Using a New VSI EWMA Average Loss Control Chart to Monitor Changes in the Difference between the Process Mean and Target and/or the Process Variability. Applied Mathematical Modelling, 37(16-17): 7973-7982.
Yang, S.F. and Arnold, B.C. (2014). A Simple Approach for Monitoring Business Service Time Variation. The Scientific World Journal, Vol. 2014, Article ID 238719, 16 pages. DOI:10.1155/2014/238719
Yang, S.F., Lin, J.S. and Cheng, S.W. (2011). A New Nonparametric EWMA Sign Control Chart. Expert Systems with Applications, 38(5): 6239-6243.
Yang, S.F. and Yang, C.M. (2006). An Approach to Controlling Two Dependent Process Steps with Autocorrelated Observations. International Journal of Advanced Manufacturing Technology, 29(1): 170-177.
Zantek, P.F., Wright, G.P. and Plante, R.D. (2002). Process and Product Improvement in Manufacturing Systems with Correlated Stages. Management Science, 48(5): 591-606.
Zhang, G.X. (1984). A New Type of Control Charts and A Theory of Diagnosis with Control Charts. World Quality Congress Transactions, American Society for Quality Control, London, 175-185.
Zhang, G.X. (1987). Cause-Selecting Control Charts a New Type of Quality Control Charts. 41st Annual Quality Congress, Minneapolis, MN, 41(0): 16-21.
Zhang, G.X. (1990). A New Diagnosis Theory with Two Kinds of Quality. Total Quality Management, 1(2): 249-257.
Zhang, G.X. (1992). Cause-Selecting Control Chart and Diagnosis, Theory and Practice. Aarhus School of Business. Department of Total Quality Management, Aarhus, Denmark.
Zhang, L., Gan, F.F. and Loke, C.K. (2012). Phase I Study of Surgical Performances with Risk-Adjusted Shewhart Control Charts. Quality Technology and Quantitative Management, 9(4): 375-382.
潘浙楠、林明毅,(1999),在製程平均微量變動下管制圖正確選用之探討與研究,品質學報,第6卷,第1期,1-28頁。
潘浙楠、陳必達,(2004),自我相關環保管制圖的比較研究-以台北地區空氣汙染資料為例,中國統計學報,第42卷,第1期,31-62頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top