(3.220.231.235) 您好!臺灣時間:2021/03/07 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周睿騰
研究生(外文):Jui-TengChou
論文名稱:應用主成分空間機率模型於水下通訊定位系統
論文名稱(外文):Applying Probabilistic Model for Principal Component Space to Underwater Communication Positioning System
指導教授:李坤洲李坤洲引用關係
指導教授(外文):Kun-Chou Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:68
中文關鍵詞:水下通訊定位主成分分析最大散度差高斯混合模型最大概似估計圖樣辨識
外文關鍵詞:Underwater positioningPrincipal Component AnalysisMaximum scatter differenceGaussian mixture modelMaximum likelihoodPattern recognition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用主成分分析法(principal-component-analysis, PCA)與最大散度差演算法(maximum-scatter-difference algorithm, MSDA)於高斯分佈或高斯混合模型下應用於水下聲波通訊定位。
我們的定位系統流程分為兩個階段,分別為收集訊號的訓練階段和實際定位的測試階段。於訓練階段,我們先利用PCA及MSDA對水下聲波訊號做處理以減少訊號雜訊及環境波動影響。PCA能降低資料維度並捨去帶有雜訊之訊號,而MSDA目的為拉開不同資料類別間的距離及縮短同一資料類別內的差距,並採用類間及類內的差別作為區別標準,所以能因此而減少演算過程所造成的複雜度並加速定位計算流程。於測試階段,為了減少多重反射路徑的干擾影響,我們於高斯分佈或高斯混合模型下利用指紋特徵圖樣辨識概念應用於水下聲波定位。為了證明此做法能夠不受反射訊號或多重路徑傳播訊號所帶來的影響,實驗設置在有邊界的拖曳水槽。我們提出了頻率分量來模擬水下通訊訊號發射器的方法,藉此降低於水下環境中硬體成本問題。最後,我們計算實際位置與估計位置的歐式距離以作為定位誤差。
In this thesis, it is found that how to position given underwater acoustic sources via the maximum likelihood estimation for Gaussian distribution or GMM (Gaussian-mixture-model), together with the PCA (principal-component-analysis) and an MSDA (maximum-scatter-difference algorithm).
The process of our positioning system consists of two stages --- training (offline) and testing (online). During the training stage, to reduce the chaos of underwater acoustic signals and the impact of fluctuations, underwater acoustic signals are processed by the PCA and the MSDA. The PCA can descend dimensions of data and the MSDA adopts the difference of both between-class scatter and within-class scatter as a discriminant criterion, so they reduce the algorithm-induced complexity and hence speed up calculation process. In the testing stage, to reduce the disturbance of reflected signals, we utilize location fingerprinting and likelihood-based pattern recognition for Gaussian distribution or GMM to position underwater acoustic sources. To demonstrate such method is not affected by reflected signals or multipath communication signals, experiments are done in bordered towing tank. We propose a method of using frequency components to simulate underwater communication sound projectors to lower hardware cost in underwater environment. Finally, as soon as the Euclidean distances between the actual positions and the estimated ones are calculated, we obtain the errors of underwater positioning.
摘要 .................................................. I
Abstract ............................................. II
Table of Contents .................................... IV
List of Figures ....................................... V
Chapter 1 Introduction ................................ 1
1-1 Research Background and Motivation ................ 1
1-2 Contribution ...................................... 2
1-3 Thesis Overview ................................... 3
Chapter 2 Basic Theory ................................ 6
2-1 Maximum-Scatter-Difference Algorithm .............. 6
2-2 Principal-Component-Analysis ...................... 7
2-3 Gaussian-Mixture-Model............................. 8
Chapter 3 Underwater Positioning via Probabilistic Approach with MSDA ................................... 13
3-1 Introduction ..................................... 13
3-2 Formulation ...................................... 14
3-3 Experiment and Result............................. 18
Chapter 4 Underwater Positioning via Probabilistic Approach with PCA and MSDA............................ 30
4-1 Introduction ..................................... 30
4-2 Formulation ...................................... 31
4-3 Experiment and Result............................. 36
Chapter 5 Underwater Positioning via Probabilistic Approach Based on GMM with PCA and MSDA .............. 44
5-1 Introduction ..................................... 44
5-2 Formulation ...................................... 45
5-3 Experiment and Result............................. 53
Chapter 6 Summary .................................... 61
6-1 Conclusion ....................................... 61
6-2 Future Work ...................................... 63
References ........................................... 64
[1] R. S. Andrews and L. F. Turner, “On the Performance of Underwater Data Transmission Systems Using Amplitude-Shift-Keying Techniques, IEEE Transactions On Sonics and Ultrasonic, Vol. 23, No.1, pp. 64-71, 1976.
[2] D. R. Yoerger and J. J. E. Slotine, “Robust Trajectory Control of Underwater Vehicles, IEEE Journal of Oceanic Engineering, Vol. 10, No. 4, pp. 462-470, 1985.
[3] A. Falahati, B. Woodward, and S. C. Bateman, “Underwater Acoustic Channel Models for 4800b/s QPSK Signals, IEEE Journal of Oceanic Engineering, Vol. 16, No. 1, pp. 12-20,1991.
[4] M. Stojanovic, “Recent Advances in High Speed Underwater Acoustic Communications, IEEE Journal of Oceanic Engineering, Vol. 21, No. 2 pp.125-136, 1996.
[5] K. Vickery, “Acoustic Positioning Systems. A Practical Overview of Current Systems, In Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, Fort Lauderdale, FL, USA, pp. 5-17, August 1998.
[6] H. G. Thomas, “GIB buoys: An Interface between Space and Depths of the Oceans, In Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, Fort Lauderdale, FL, USA, pp. 181-184, August 1998.
[7] E. M. Sozer, M. Stojanovic, and J. G. Proakis, “Underwater Acoustic Networks, IEEE Journal of Oceanic Engineering, Vol. 25, No. 1, pp. 72-83, 2000.
[8] N. Miskovic and M. Barisic, “Fault Detection and Localization on Underwater Vehicle Propulsion Systems Using Principal Component Analysis, In Proceedings of the IEEE international symposium on industrial electronics, Dubrovnik, Croatia, Vol. 4, pp. 1721-1728, June 2005.
[9] P. Oliveira, “MMAE Terrain Reference Navigation for Underwater Vehicles Using PCA, International Journal of Control, Vol. 80, No. 7, pp. 1008-1017, 2007.
[10] K. Kaemarungsi and P. Krishnamurthy, “Properties of indoor received signal strength for WLAN location fingerprinting, Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Service, pp. 14-23, 2004.
[11] A. Taheri, A. Singh, and A. Emmanuel, “Location fingerprinting on infrastructure 802.11 wireless local area networks (WLANs) using locus, Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, pp. 676-683, 2004.
[12] K. Kaemarungsi and P. Krishnamurthy, “Modeling of indoor positioning systems based on location fingerprinting, Proceedings of the IEEE INFOCOM, pp. 1012-1022, 2004.
[13] E. M. Nosal and L. N. Frazer, “Track of single sperm whale from delays between direct and surface-reflected clicks, Appl. Acoust., Vol. 67, pp. 1187–1201, 2006.
[14] P. Giraudet and H. Glotin, “Real-time 3D tracking of whales by echo-robust precise TDOA estimates with a widely-spaced hydrophone array, Appl. Acoust., Vol. 67, pp. 1106-1117, 2006.
[15] L. Houégnigan, S. Zaugg, M. van der Schaar, and M. André, “Space–time and hybrid algorithms for the passive acoustic localisation of sperm whales and vessels, Appl. Acoust., Vol. 71, pp. 1000-1010, 2010.
[16] G. G. Raleigh and T. Boros, “Joint space-time parameter estimation for wireless communication channel, IEEE Trans. Signal Process., Vol. 46, pp. 1333-1343, 1998.
[17] Q. Zhang and J. Huang, “Joint estimation of DOA and time-delay in underwater localization, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. 2817-2820, 1999.
[18] Y. Chen, Q. Yang, J. Yin, and X. Chai, “Power-efficient access location selection for indoor location estimation, IEEE Trans. Knowl. Data Eng., Vol. 18, pp. 877-888, 2006.
[19] K. C. Lee, J. S. Ou, M. C. Huang, and M. C. Fang, “A novel location estimation based on pattern matching algorithm in underwater environments, Appl. Acoust., Vol. 70, pp. 479-483, 2009.
[20] K. C. Lee, J. S. Ou, and M. C. Huang, “Underwater acoustic localization by principal components analyses based probabilistic approach, Appl. Acoust., Vol. 70, pp. 1168-1174, 2009.
[21] X. D. Li and A. G. Song, “Face recognition using m-MSD and SVD with single training image, Control Conference (CCC), 30th Chinese, pp. 3231-3233, 2011.
[22] S. C. Chan and K. C. Lee, “Radar target recognition by MSD algorithms on angular-diversity RCS, IEEE Antennas and Propagation Letters, Vol. 12, pp. 937-940, 2013.
[23] R. E. Ziemer and W. H. Tranter, “Principals of Communications: Systems, Modulation, and Noise, Wiley, New York, 2002.
[24] T. K. Moon and W. C. Stirling, “Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, New Jersey, 2000.
[25] M. A. Youssef, A. Agrawala, and A. U. Shankar, “WLAN location determination via clustering and probability distributions, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp. 143-150, 2003.
[26] T. K. Moon and W. C. Stirling, “Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000.
[27] S. Theodoridis and K. Koutroumbas, “Pattern Recognition, 2nd edition, Academic Press, Boston, 2003.
[28] K. C. Lee, J. S. Ou, and M. C. Huang, “Underwater Acoustic Localization by Principal Components Analyses Based Probabilistic Approach, Applied Acoustics, Vol. 70, No. 9, pp. 1168-1174, 2009.
[29] 黃智威,“應用機率統計模型於水上雷達目標辨識與水下通訊定位,國立成功大學系統及船舶機電工程所博士論文,2011。
[30] 詹勝智,“應用核方法於水上雷達目標辨識與水下通訊定位,國立成功大學系統及船舶機電工程所博士論文,2014。
[31] K. C. Lee, J. S. Ou, and M. C. Fang, “Application of SVD Noise-Reduction Technique to PCA Based Radar Target Recognition, Progress In Electromagnetics Research- PIER, Vol. 81, pp. 447-459, 2008.
[32] C.W. Huang and K. C. Lee, “Application of ICA Technique to PCA Based Radar Target Recognition, Progress In Electromagnetic Research-PIER, Vol. 105, pp. 157-170, 2010.
[33] C.W. Huang and K. C. Lee, “Frequency-Diversity RCS Based Target Recognition with ICA Projection, Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, pp. 2547-2559, 2010.
[34] D. A. Reynolds, “A Gaussian Mixture Modeling Approach to Text-Independent Speaker Identification, Georgia Institute of Technology, 1992.
[35] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker Verification Using Adapted Gaussian Mixture Models, Digital Signal Processing, Vol. 10, pp. 19-41, 2000.
[36] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, Vol. 39, pp. 1-38, 1977.
[37] H. Hartley, “Maximum likelihood estimation from incomplete data, Biometrics, Vol. 14, pp. 174-194, 1958.
[38] J. S. R. Jang, C. T. Sun, and E. Mizutani, “Neuro-Fuzzy and Soft Computing, Prentice Hall, pp. 426-427, 1997.
電子全文 電子全文(網際網路公開日期:20250101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔