跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥寬
研究生(外文):Yen-KuanLee
論文名稱:利用使用者查詢特徵之知識演化系統
論文名稱(外文):Knowledge Evolution with Search Correlation
指導教授:莊坤達莊坤達引用關係
指導教授(外文):Kun-Ta Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:42
中文關鍵詞:實體知識庫
外文關鍵詞:knowledge baseRDFtripleentity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討一個即時性的知識演化的問題,針對一個知識庫中不斷變化的知識要如何擴展進行研究。在先前的研究中要做到知識的取得,來源必須從整個完整的上億個網頁進行搜索確認,然而,一般人平時在關注的知識卻只有在知識庫中的某一部份,例如一些新發生的熱門事件。因此本文利用使用者搜尋記錄得知使用者所關注的實體人事物,並將這些使用者搜尋實體並點選的網頁來輔助系統使用資料探勘方式計算實體間的關聯性,對於關聯性高的兩個實體,系統進入共連網頁抓出此二實體真正的關係,並日復一日的更新入知識庫。
In this paper, we explore a novel problem, called Knowledge Evolution, to identify timely new knowledge triples. In the literature, the need of knowledge enrichment has been recognized as the key to the success of knowledge-based search. However, previous work of automatic knowledge extraction, such as Google Knowledge Vault, aim at identifying the unannotated knowledge triples from the full web-scale content in the offline execution. However, in our study, we show that most people demand a specific knowledge, such as the marriage between Brad Pitt and Angelina Jolie, soon after the information is announced. Moreover, the number of queries of such knowledge dramatically declines after a few days, meaning that the most people cannot obtain the precise knowledge from the execution of the offline knowledge enrichment. To remedy this, we propose the SCKE framework to extract new knowledge triples which can be executed in the online scenario. We model the ’Query-Click Page’ bipartite graph to extract the query correlation and to identify cohesive pairwise entities, finally statistically identifying the confident relation between entities. Our experimental studies show that new triples can also be identified in the very beginning after the event happens, enabling the capability to provide the up-to-date knowledge summary for most user queries.
中文摘要 i
Abstract ii
Contents iii
List of Tables iv
List of Figures v
1 Introduction 1
2 Related Work 5
3 The SCKE Framework and Algorithms 8
3.1 Cohesive Pairwise-entities Generation 8
3.2 Relation Identification 16
3.3 Triples Classifier 25
4 Experimental Results 30
5 Conclusions 40
6 Bibliography 41
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives, “Dbpedia: A nucleus for a web of open data, in SEMWEB, 2007.
[2] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively created graph database for structuring human knowledge, in ACM SIGMOD,
2008.
[3] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell, “Toward an architecture for never-ending language learning, in AAAI, 2010.
[4] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge, in WWW, 2007.
[5] B. Suh, G. Convertino, E. H. Chi, and P. Pirolli, “The singularity is not near: slowing growth of wikipedia, in Proceedings of the 2009 International Symposium on Wikis, 2009,
Orlando, Florida, USA, October 25-27, 2009, 2009.
[6] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: a web-scale approach to probabilistic knowledge fusion,
in ACM SIGKDD, 2014.
[7] V. Leroy, B. B. Cambazoglu, and F. Bonchi, “Cold start link prediction, in ACM SIGKDD, 2010.
[8] D. Liben-Nowell and J. M. Kleinberg, “The link prediction problem for social networks, in CIKM, 2003.
[9] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu, “Scalable proximity estimation and link prediction in online social networks, in ACM SIGCOMM, 2009.
[10] J. Zhu, Z. Nie, X. Liu, B. Zhang, and J. Wen, “Statsnowball: a statistical approach to extracting entity relationships, in WWW, 2009.
[11] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, P. Singla, M. Sumner, and J. Wang, “Markov logic: A unifying language for structural and statistical pattern recognition, in SSPR, 2008.
[12] L. Backstrom and J. Leskovec, “Supervised random walks: predicting and recommending links in social networks, in WSDM, 2011.
[13] H. Chen, W. Ku, H. Wang, L. Tang, and M. Sun, “Linkprobe: Probabilistic inference on large-scale social networks, in IEEE ICDE.
[14] N. Lao, T. M. Mitchell, and W. W. Cohen, “Random walk inference and learning in A large scale knowledge base, in EMNLP, 2011.
[15] N. Lao and W. W. Cohen, “Relational retrieval using a combination of path-constrained random walks, Machine Learning, vol. 81, no. 1, pp. 53–67, 2010.
[16] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open information extraction, in EMNLP, 2011.
[17] F. Niu, C. Zhang, C. R´e, and J. W. Shavlik, “Elementary: Large-scale knowledge-base construction via machine learning and statistical inference, Int. J. Semantic Web Inf. Syst., vol. 8, no. 3, pp. 42–73, 2012.
[18] A. Neelakantan and M. Collins, “Learning dictionaries for named entity recognition using minimal supervision, CoRR, vol. abs/1504.06650, 2015.
[19] C. Li, A. Sun, J. Weng, and Q. He, “Tweet segmentation and its application to named entity recognition, IEEE Trans. Knowl. Data Eng., vol. 27, no. 2, pp. 558–570, 2015.
[20] L. Derczynski, D. Maynard, G. Rizzo, M. van Erp, G. Gorrell, R. Troncy, J. Petrak, and K. Bontcheva, “Analysis of named entity recognition and linking for tweets, Inf. Process. Manage., vol. 51, no. 2, pp. 32–49, 2015.
[21] M. Konkol, T. Brychcin, and M. Konop´ık, “Latent semantics in named entity recognition, Expert Syst. Appl., vol. 42, no. 7, pp. 3470–3479, 2015.
[22] S. Keretna, C. P. Lim, D. C. Creighton, and K. B. Shaban, “Enhancing medical named entity recognition with an extended segment representation technique, Computer Methods and Programs in Biomedicine, vol. 119, no. 2, pp. 88–100, 2015.
[23] A. Demski, V. Ustun, P. S. Rosenbloom, and C. Kommers, “Outperforming word2vec on analogy tasks with random projections, CoRR, vol. abs/1412.6616, 2014.
[24] T. Shi and Z. Liu, “Linking glove with word2vec, CoRR, vol. abs/1411.5595, 2014.
[25] X. Rong, “word2vec parameter learning explained, CoRR, vol. abs/1411.2738, 2014.
[26] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-sampling word-embedding method, CoRR, vol. abs/1402.3722, 2014.
[27] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “LIBLINEAR: A library for large linear classification, Journal of Machine Learning Research, vol. 9, 2008.
[28] S. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient L1 regularized logistic regression, in AAAI, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top