跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許建涵
研究生(外文):Jian-HanHsu
論文名稱:以整體運動趨勢為基礎之超音波影像序列追蹤
論文名稱(外文):Tendon Motion Tracking Based on Global Motion Trend for Ultrasound Image Sequence
指導教授:孫永年孫永年引用關係
指導教授(外文):Yung-Nien Sun
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:63
中文關鍵詞:肌腱超音波運動追蹤整體運動趨勢光流法多核心區塊匹配
外文關鍵詞:tendon ultrasoundmotion trackingglobal motion trendoptical flowmulti-kernel block matching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超音波系統廣泛應用於與軟組織相關的病理診斷,對於肌腱部位的評估扮演著重要的角色。肌腱病變是骨科臨床常見的疾病之一,手部肌腱病變的診斷包括狹窄性肌腱滑膜炎、板機指以及網球肘,臨床醫師常藉以測量其肌腱滑移量評估病變與否。然而在肌腱超音波影像序列追蹤上,不止受到超音波斑點雜訊與其他外在因素影響,還包含肌腱本身的纖維結構,使得其運動趨勢與滑移量難以準確的追蹤,並且相當耗時。
為解決上述問題,本篇論文提出兩種以整體運動趨勢為基礎的追蹤演算法,應用於追蹤手肘的伸肌總腱與手指的屈指深肌。在伸肌總腱的部分,由於其運動通常伴隨著骨頭的整體運動,因此第一種方法利用骨頭的整體運動趨勢當作參考,在肌腱部位找到最佳的穩定特徵點,接著找出此特徵點在時間軸上的每個位子,即定義為整個肌腱運動的路徑;而在屈指深肌的部分,單純只有肌腱的運動,因此採用第二種方法,利用光流法的運動當作參考,給予多核心區塊匹配適當的時機點執行,並且利用光流法的運動趨勢當作內插的資訊,得到良好的追蹤結果。
為了驗證方法的正確性,本篇論文藉由大體實驗,在屈指深肌部位埋下鋁片,確認肌腱運動在超音波影像序列上的情形。在手肘的伸肌總腱則是利用人工追蹤的結果來驗證方法,同時利用在大體實驗驗證過的方法來佐證。本篇論文所提出的兩種方法皆可有效的利用整體運動趨勢當作參考來輔佐追蹤結果,並且經由實驗可得之兩種方法皆有可靠並準確的估計肌腱的運動狀況。

Ultrasound system plays an important role in soft tissue examination, which has been widely used in clinical tendinopathy evaluation. In human hands, tendon motion estimation in ultrasound image sequences is of great significance for investigating tendinopathies including trigger finger and tennis elbow. However, the difficulties of tendon motion tracking for ultrasound image sequences not only suffer from temporal decorrelation of speckle patterns, shadow, artifact and other factors but also confused by the hard-tracking fibrous structure of tendons.
Unlike traditional tracking methods which refer to the information of the previous frames or of the first frame only, this study presents two novel strategies based on global motion trend for tendon motion estimation in elbows and fingers to overcome the above-mentioned problems. The first one is a 3-D global trend-based speckle tracking (GTB-ST) scheme, which searches the best speckle feature point for overall tendon position tracking. The second one is an integrated 2-D optical flow trend-based multi-kernel block matching (OFTB-MKBM) scheme with subpixel motion tracking that can handle both small and large displacements at different instantaneous velocities during the entire motion sequence.
Manual tracking in common extensor tendon of elbow and cadaver experiment in flexor digitorum profundus (FDP) tendon of middle finger were measured to validate the accuracies of proposed techniques. Experimental results revealed that the proposed methods are with precise and reliable motion estimation in long B-mode tendon ultrasound image sequences.

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Work 3
1.3 Overview of the Proposed Methods and Thesis Organization 6
Chapter 2 Experimental Materials 8
2.1 Instruments 8
2.2 Experiment Setting for Human Motion 9
2.3 Experiment Setting for Human Cadaver 12
Chapter 3 Global Trend-Based Speckle Tracking (GTB-ST) 14
3.1 System Architecture 15
3.2 Global Motion Path Extraction 15
3.2.1 Bone Positioning 16
3.2.2 Bone Motion Path Segmentation 17
3.3 Optimal Tendon Feature Point Searching 18
3.4 Tendon Motion Path Extraction based on spatiotemporal information 21
Chapter 4 Optical Flow Trend-Based Multi-Kernel Block Matching (OFTB-MKBM) 23
4.1 Optical Flow 24
4.1.1 Optical Flow Concept 25
4.1.2 Optical Flow Estimation for Tendon Motion Tracking 25
4.2 Multi-Kernel Block Matching 29
4.3 Comparison between Optical Flow and Multi-Kernel Block Matching 31
4.4 Optical Flow Trend-Based Multi-Kernel Block Matching 33
Chapter 5 Experimental Results and Discussion 35
5.1 Experimental Results in Finger 35
5.1.1 Evaluation of Ground Truth 35
5.1.2 Evaluation of the Proposed OFTB-MKBM Method 38
5.1.3 Comparison with Other Algorithms 41
5.1.4 Experiments with different MKBM block sizes 44
5.1.5 Experiments with different OF window sizes 47
5.2 Experimental Results in Elbow. 50
5.2.1 Results of the Proposed GTB-ST Method 50
5.2.2 Comparison and Discussion 56
Chapter 6 Conclusion and Future Works 59
6.1 Conclusions 59
6.2 Future Work 60
References 61

[1] A. Giachetti, “Matching techniques to compute image motion, Image and Vision Computing, vol. 18, pp. 247-260, 2000.
[2] A. Dilley, J. Greening, B. Lynn, R. Leary and V. Morris, The use of cross- correlation analysis between high-frequency ultrasound images to measure longitudinal median nerve movement, Ultrasound in Medicine and Biology vol. 27, pp. 1211-1218, 2001.
[3] A. Krupa, G. Fichtinger and G. D. Hager, “Full Motion Tracking in Ultrasound Using Image Speckle Information and Visual Servoing, IEEE International Conference on Robotics and Automation, pp. 2458-2464, 2007.
[4] A. Gastounioti, S. Golemati, J. Stoitsis and K.S. Nikita, “Kalman-Filter-Based Block Matching for Arterial Wall Motion Estimation from B-Mode Ultrasound, Imaging Systems and Techniques (IST), 2010 IEEE International Conference on, 2010, pp. 234-239.
[5] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision, Proceedings of Imaging Understanding Workshop, pp. 121-130, 1981.
[6] B. D. Lucas, “Generalized Image Matching by the Method of Differences, 1984.
[7] B. Cohen and I.h. Dinstein, “New maximum likelihood motion estimation schemes for noisy ultrasound images, Pattern Recognition vol. 35, pp. 455-463, 2002.
[8] D. Boukerroui , J. Noble and M. Brady, “Velocity estimation in ultrasound images: A block matching approach, Information Processing in Medical Imaging, vol. 2732, 2732, pp. 586-598, 2003
[9] F. Preiswerk, V. D. Luca, P. Arnold, Z. Celicanin, L. Petrusca, C. Tanner, O. Bieri, R. Salomir, P. C. Cattin, “Model-guided respiratory organ motion prediction of the liver from 2D ultrasound, Medical Image Analysis, vol. 18, pp. 740-751, 2014.
[10] G. F. Pinton, J. J. Dahl, and G. E. Trahey, “Rapid Tracking of Small Displacements with Ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 53, pp. 1103-1117, 2006.
[11] H.-H. Nagel and W. Enkelmann, “An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 565-593, 1986.
[12] H. Guerini, E. Pessis, N. Theumann, J.-S. L. Quintrec, R. Campagna, A. Chevrot, A. Feydy, J.-L. Drapé, “Sonographic Appearance of Trigger Fingers, Journal of Ultrasound in Medicine, vol. 27, pp. 1407-1413, 2008.
[13] J. Revell, M. Mirmehdi and D. McNally, “Computer vision elastography: Speckle adaptive motion estimation for elastography using ultrasound sequences, IEEE Trans Med Imaging, vol. 24, pp. 755-766, 2005.
[14] J. Guerrero, S. E. Salcudean, J. A. McEwen, B. A. Masri, and S. Nicolaou, “Real-Time Vessel Segmentation and Tracking for Ultrasound Imaging Applications, IEEE Transactions on Medical Imaging, vol. 26, pp. 1079-1090, 2007.
[15] J.-W. H. Korstanje, R. W. Selles, H. J. Stam, S. E.R. Hovius and J. G. Bosch, “Development and validation of ultrasound speckle tracking to quantify tendon displacement, Journal of Biomechanics, vol. 43, pp. 1373-1379, 2010.
[16] J. Smith and E. Maida, “Musculoskeletal Ultrasound of Tendons, Operative Techniques in Orthopaedics, vol. 23, pp. 50-55, 2013.
[17] K. Sunding, M. Fahlström, S. Werner, M. Forssblad and L. Willberg, “Evaluation of Achilles and patellar tendinopathy with greyscale ultrasound and colour Doppler: using a four grade scale, Knee Surg Sports Traumatol Arthrosc, 2014.
[18] K. J. Stegman, S. Djurickovic and N. Dechev, In Vivo Estimation of Flexor Digitorum Superficialis Tendon Displacement with Speckle Tracking on 2-D Ultrasound Images Using Laplacian, Gaussian and Rayleigh Techniques, Ultrasound in Med. & Biol., vol. 40, pp. 568-582, 2014.
[19] L.N. Bohs and G.E. Trahey, “A novel method for angle independent ultrasonic imaging of blood flow and tissue motion, IEEE Transactions on Biomedical Engineering, vol. 38, pp. 280-286, 1991.
[20] M. G. Strintzis and I. Kokkinidis, “Maximum likelihood motion estimation in ultrasound image sequences, IEEE Signal Process Letters vol. 4, pp. 156-157, 1997.
[21] M. G. Danilouchkine, F. Mastik, and A. F. W. van der Steen, “Improving IVUS Palpography by Incorporation of Motion Compensation Based on Block Matching and Optical Flow, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, pp. 2394-2404, 2008.
[22] P.J. Brands, A.P. Hoeks, L.A. Ledoux and R.S. Reneman, “A radio frequency domain complex cross-correlation model to estimate blood flow velocity and tissue motion by means of ultrasound, Ultrasound in Medicine and Biology, vol. 23, pp. 911-920, 1997.
[23] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME–Journal of Basic Engineering, vol.82, pp.35-45, 1960.
[24] Sabrina S.M. Lee, Gregory S. Lewis and Stephen J. Piazza, “An Algorithm for Automated Analysis of Ultrasound Images to Measure Tendon Excursion in Vivo, Journal of Applied Biomechanics, vol. 24, pp. 75-82, 2008.
[25] Siemens Global Website. Available: http://www.healthcare.siemens.com/
[26] V. Dones, J. Thomas, P. Lesniewski, K. Thoirs, K. Grimmer, C. Suarez, “The Reliability of Musculoskeletal Ultrasound Video Tracking of Muscle and Tendon Displacement, International Journal of Scientific and Research Publications, vol. 4, 2014.
[27] W. Yu, P. Yan, A.J. Sinusas, K. Thiele and J.S. Duncan, “Towards pointwise motion tracking in echocardiographic image sequences—comparing the reliability of different features for speckle tracking, Medical Image Analysis, vol. 10, pp. 495-508, 2006.
[28] Y. H. Liu, S. M. Chen, C. Y. Lin, C. I Huang and Y. N. Sun, “Motion Tracking on Elbow Tissue from Ultrasonic Image Sequence for Patients with Lateral Epicondylitis, Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 95-98, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文