跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱英碩
研究生(外文):Ying-ShuoChiu
論文名稱:氧化鋅奈米柱/氧化鋅式離子場效電晶體生醫感測器之研究
論文名稱(外文):Investigation of ZnO nanorod/ZnO-based ion-sensitive field-effect-transistor biosensors
指導教授:李清庭
指導教授(外文):Ching-Ting Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:88
中文關鍵詞:葡萄糖生醫感測器酸鹼感測器光電化學法鍵結模型低溫氣相冷凝系統氧化鋅奈米柱/氧化鋅 離子場效電晶體
外文關鍵詞:Glucose biosensorsphotoelectrochemical methodpH sensorssite-binding modelvapor cooling condensation systemZnO nanorod /ZnO-based ISFETs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用低溫氣相冷凝系統以及化學水溶液法成功製作氧化鋅奈米柱/氧化鋅式離子場效電晶體生醫感測器。藉由整合氧化鋅感測膜及氧化鋅場效電晶體於離子場效電晶體型式之生醫感測器,可以有效避免一般常見延伸式閘極場效電晶體型式的感測器元件體積過大以及傳輸路徑較長的缺點。此外,將氧化鋅奈米柱應用於離子場效電晶體生醫感測器更可大幅增加元件的感測表面積使感測特性有效提升,然而氧化鋅奈米柱表面所存在的懸鍵與界面態位將造成費米能階釘紮效應降低感測器的感測特性。為降低費米能階釘紮效應對感測器所造成的影響,本研究利用光電化學法針對氧化鋅表面的懸鍵與界面態位進行護佈,以避免感測膜表面與溶液接觸時費米能階無法有效隨著不同溶液的功函數變化的情形。
研究中所製作完成之氧化鋅奈米柱首先以X光繞射儀進行量測,量測結果顯示34.5度有一明顯的繞射波峰存在,此波峰相對應為氧化鋅(002)結晶相,證明所成長之氧化鋅奈米柱具有良好之結晶特性。此外,藉由掃描式電子顯微鏡的拍攝圖中可確認氧化鋅奈米柱陣列可垂直且均勻的成長於離子場效電晶體的感測區域。另一方面,經光電化學法護佈後的氧化鋅材料以X光光電子能譜儀進行表面的鍵結分析,結果顯示於532.2 eV有明顯的氧化鋅與氫氧根鍵結,證明經過光電化學法護佈處理後,氧化鋅表面可有效形成護佈層以降低懸鍵與表面態位造成的影響。經光電化學法護佈後之氧化鋅奈米柱/氧化鋅式離子場效電晶體生醫感測器針對酸鹼值進行量測,其酸鹼感測度相較於無氧化鋅奈米柱之離子場效電晶體酸鹼感測器及未經護佈之氧化鋅奈米柱/氧化鋅式離子場效電晶體生醫感測器大幅提升至56.35 mV/pH。將實驗結果與吸附鍵結模型進行計算及比較,所計算出感測度參數達2.05,且模型之表面電位相對酸鹼值的變化趨勢與實驗結果相互符合。在葡萄糖量測方面,經光電化學法護佈後,氧化鋅奈米柱/氧化鋅式離子場效電晶體生醫感測器之葡萄糖感測度達32.43 uA/mM,且反應速度與濃度量測範圍相較於無奈米柱及奈米柱未經護佈的元件都明顯改善。此外,所量測之葡萄糖感測結果可利用Lineweaver–Burk equation計算酵素親和力參數,經計算後,具光電化學法護佈的氧化鋅奈米柱感測膜其參數值達2.05 mM,此結果證明葡萄酵素可有效附著於感測膜表面且保持良好的酵素活性。由上述各項實驗結果中可知,經光電化學法護佈後,氧化鋅奈米柱/氧化鋅式離子場效電晶體生醫感測器的各項生醫感測特性相較於其他製程的感測器皆明顯改善提升,其原因為氧化奈米柱可大幅提升生醫感測器的感測表面積,且光電化學法的護佈更可有效降低感測膜表面的懸鍵及界面態位所造成的影響。
In this dissertation, the ZnO nanorod/ZnO-based ion-sensitive field-effect-transistor biosensor was successful fabricated using the vapor cooling condensation system and aqueous solution growth method. To effectively minimize the dimension of the extended-gate field-effect-transistor (EGFET)-based biosensors and shorten the path of sensing signal between the sensing head and the field-effect-transistor, the ZnO sensing membrane was integrated with the ZnO-based field-effect-transistor as the ion-sensitive field-effect-transistor (ISFET)-based biosensors. To increase the sensing surface area, the aqueous chemical solution method was applied to grow the ZnO nanorod arrays on the sensing region of the ZnO-based ISFET biosensors. Furthermore, to suppress the influence of the Fermi level pinning effect induced by the dangling bonds and surface states resided on the ZnO nanorod arrays, the photoelectrochemical method was applied.
The X-ray diffraction spectrum of the grown ZnO nanorod arrays revealed the obvious peak at 2θ of 34.5° originating from (002) plane which indicated that the ZnO nanorod arrays possessed the favorable crystal orientation characteristic. The SEM images of ZnO nanorod arrays and top view of the fabricated ZnO nanorod/ZnO-based ion-sensitive field-effect-transistor biosensor demonstrate that the vertical and uniform ZnO nanorod arrays were successfully grown on the sensing region. The measured XPS spectrum showed that the PEC-passivated ZnO film revealed the obvious chemical bond structure of Zn-OH bonds located at the binding energy of 532.2 eV comparing to the unpassivated one.
To investigate pH sensing performances of the ZnO nanorod/ZnO-based ISFET pH sensors with PEC passivation, the ZnO-based ISFET pH sensors and the ZnO nanorod/ZnO-based ISFET pH sensors without PEC passivation were fabricated to compare. Among the three ISFET pH sensors, the passivated ZnO nanorod/ZnO-based ISFET biosensors showed the pH sensitivity of 56.35 mV/pH comparing other pH sensors. In addition, the site-binding model which described the sensing behavior of the pH sensors was also introduced to calculate the sensitivity parameter β for further verifying the experimental results. The linear response and sensitivity parameter β of 2.05 were obtained for the passivated ZnO nanorod/ZnO-based ISFET pH sensors ISFETs. The favorable calculating and fitting results could be concluded that the experimental results properly fitted the sensing behaviors described by the site-binding mode.
The glucose sensing performance of the passivated ZnO nanorod/ZnO-based ISFET glucose biosensors showed that the glucose sensing sensitivity was 32.43 uA/mM which was much better than other glucose biosensors. Moreover, the passivated ZnO nanorod/ZnO-based ISFET glucose biosensors also exhibited the broader linear sensing range and faster response time less than 9 seconds. The superior pH and glucose sensing performance were owing to the increase of sensing surface provided by the ZnO nanorods and the suppression of Fermi level pinning induced by the dangling bonds and surface states via the PEC passivation function.
Finally, the apparent Michaelis–Menten constant, a reflection index of the enzymatic affinity, was introduced to calculate using the Lineweaver–Burk equation. The low K value of 2.05 mM showed that the passivated ZnO nanorod/ZnO-based ISFET glucose biosensors could effectively retain its bioactivity and possess the high affinity between the glucose oxidase and the glucose.
Abstract (in Chinese)......................................I
Abstract (in English).....................................IV
Chapter 1
Introduction...............................................1
1.1 Motivation.............................................1
1.2 Overview of this dissertation..........................3
References.................................................5
Chapter 2
Theory....................................................17
2.1 The zinc oxide (ZnO) semiconductor....................17
2.2 Sensing mechanism of the FET-based biosensors.........17
2.3 pH value and glucose sensing mechanism of the FET-based sensors...................................................19
2.4 The Fermi level pinning effect........................21
2.5 The photoelectrochemical (PEC) method.................22
2.6 X-ray photoelectron spectroscopy (XPS)................24
References................................................26
Chapter 3
Device Fabrication........................................38
3.1 The vapor cooling condensation system.................38
3.2 Aqueous solution growth method........................39
3.3 The fabrication process of the ZnO-based ISFET biosensors................................................40
3.4 The PEC passivation of ZnO-based ISFET biosensors.....41
3.5 The enzyme immobilization process of ZnO-based ISFET biosensors................................................42
3.6 Measurement system of the ZnO-based ISFET biosensors..43
References................................................44
Chapter 4
Experimental Results and Discussions......................52
4.1 The XRD spectra and SEM images of the ZnO-based ISFET biosensors................................................52
4.2 The analysis of the PEC-passivated ZnO using XPS measurement...............................................53
4.3 Characterization of ZnO-based ISFET pH sensors........54
4.4 Sensing sensitivity of the ZnO-based ISFET pH sensor..55
4.5 Characterization of ZnO-based ISFET glucose biosensors58
4.6 Enzymatic characterization of ZnO-based ISFET glucose biosensors................................................60
4.7 Sensing chracteristics of glucose biosensors in different background conditions...........................61
References................................................63
Chapter 5
Conclusion and future work................................84
Chapter 1
[1] D. Lee and T. Cui, “Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing, Biosens. Bioelectron, 25, 2259 (2010).
[2] Y. H. Chang, Y. S. Lu, Y. L. Hong, S. Gwo, and J. A. Yeh, Highly sensitive pH sensing using an indium nitride ion-sensitive field-effect transistor, IEEE Sens. J., 11, 1157 (2011).
[3] N. Chaniotakis and N. Sofikiti, “Novel semiconductor materials for the development of chemical sensors and biosensors: A review, Anal. Chim. Acta, 615, 1 (2008).
[4] H. Lu, W. Schaff, and L. Eastman, “Surface chemical modification of InN for sensor applications, J. Appl. Phys., 96, 3577 (2004).
[5] Y. Ishige, S. Takeda, and M. Kamahori, “Direct detection of enzyme-catalyzed products by FET sensor with ferrocene-modified electrode, Biosens. Bioelectron., 26, 1366 (2010).
[6] K. Tsukada, T. Kiwa, T. Yamaguchi, S. Migitaka, Y. Goto, and K. Yokosawa, “A study of fast response characteristics for hydrogen sensing with platinum FET sensor, Sens. Actuator B, 114, 158 (2006).
[7] O. Knopfmacher, A. Tarasow, W. Fu, M. Wipf, B. Niesen, M. Calame, and C. Schonenberger, “Nernst limit in dual-gated Si-nanowire FET sensors, Nano Lett., 10, 2268 (2010).
[8] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, and M. Eickhoff, “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors, Appl. Phys. Lett., 83, 177 (2003).
[9] T. Kokawa, T. Sato, H. Hasegawa, and T. Hashizume, “Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure, J. Vac. Sci. Technol. B, 24, 1972 (2006).
[10] R. Mehandru, B. Luo, B. Kang, J. Kim, F. Ren, S. J. Pearton, C. Pan, G. Chen, and J. Chyi, “AlGaN/GaN HEMT based liquid sensors, Solid State Electron, 48, 351 (2004).
[11] B. S. Kang, K. Suku, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “AlGaN/GaN-based diodes and gateless HEMTs for gas and chemical sensing, IEEE Sensor J., 5, 677 (2005).
[12] Y. Alifragis, A. Georgakilas, G. Konstantinidis, E. Iliopoulos, A. Kostopoulos, and N. Chaniotakis, “Response to anions of AlGaN/GaN high-electron-mobility transistors, Appl. Phys. Lett., 87, 253507 (2005).
[13] C. Puig-Lleixa, C. Jimenez, J. Alonso, and J. Bartroli, “Polyurethane-acrylate photocurable polymeric membrane forion-sensitive field-effect transistor based urea biosensors, Anal. Chim. Acta, 389, 179 (1999).
[14] M. Bakker, F. Van, F. DeVelde, V. Rantwijk, and R. A. Sheldon, “Highly efficient immobilization of glycosylated enzymes into polyurethane foams, Biotechnol. Bioeng., 70 , 342 (2000).
[15] K. Kailasapathy and J. Chin, “Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp, Immunol. Cell Biol., 78, 80 (2000).
[16] A. P. Nygaard and B. D. Hall, “A method for the detection of RNA–DNA complexes, Biochem. Biophys. Res. Commun., 12, 98 (1963).
[17] S. Oehler, R. Alex, and A. Barke, “Is nitrocellulose filter binding really a universal assay for protein-DNA interactions, Anal. Biochem., 268, 330 (1999).
[18] E. M. Southern, “Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 98, 503 (1975).
[19] X. Liang, D. M. Lubman, D. T. Rossi, G. D. Nordblom, and C. M. Barksdale, On-probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem., 70, 49 (1998).
[20] D. G. Pijanowska, A. Baraniecka, R. Wiater, G. Ginalska, J. Lobarzewski, and W. Torbicz, “The pH-detection of triglycerides, Sens. Actuators B, 78, 263 (2001).
[21] L. T. Yin, C. Y. Hu, and C. H. Chang, “A single layer nitrocellulose substrate for fabricating protein chips, Sens. Actuators B, 130, 374 (2008).
[22] C. W. Pan, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Development of the tin oxide pH electrode by the sputtering method, Sens. Actuators B, 108, 863 (2005).
[23] Z. Jing, J. Wang, F. Li, L. Tan, Y. Fu, and Q. Li, “Gas sensors based on ZnO nanostructures, J. Nanoengineering and Nanomanufacturing, 2 133 (2012).
[24] Z. H. Dai, G. J. Shao, J. M. Hong, J. C. Bao, and J. Shen, “Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor, Biosen. Bioelectron., 24, 1286 (2009).
[25] Z. W. Zhao, X. J. Chen, B. K. Tay, J. S. Chen, Z. J. Han, and K. A. Khor, “A novel Amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose, Biosen. Bioelectron., 23, 135 (2007) .
[26] P. Joshi, S. Chakraborti, P. Chakrabarti, S. P. Singh, Z. A. Ansari, M. Husain, and V. Shanker, “ZnO nanoparticles as an antibacterial agent against E. coli, Sci. Adv. Mater., 4, 173 (2012).
[27] A. Umar, M. M. Rahman, S. H. Kim, and Y. B. Hahn, “ZnO nanonails: synthesis and their application as glucose biosensor, J. Nanosci. Nanotech., 8, 3216 (2008).
[28] Y. B. Hahn, “Zinc oxide nanostructures and their applications, Korean Journal of Chemical Engineering, 28, 1797 (2011).
[29] X. W. Sun, J. X. Wang, and A. Wei, “Zinc oxide nanostructured biosensor for glucose detection, J. Mater. Sci. Tech., 24, 649 (2008).
[30] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection, Appl. Phy.Lett., 88, 233106 (2006).
[31] A. Fulati, S. M. Usman Ali, M. H. Asif, N. H. Alvi, M. Willander, C. Brannmark, P. Stralfors, S. I. Borjesson, F. Elinder, and B. Danielsson, “An intracellular glucose biosensor based on nano-flake ZnO, Sens. Actuators B, 150, 673 (2010).
[32] B. Fang, C. Zhang, G. Wang, M. Wang, and Y. Ji, “A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres, Sens. Actuators B, 155, 304 (2011) 304–310.
[33] S. J. Pearton, B. P. Gila, B. Appleton, D. Hays, F. Ren, J. Fridmann, and P. Mazarov, “Nanoengineering of semiconductor nanowires-synthesis, processing and sensing applications, J. Nanoengineering and Nanomanufacturing, 1, 35 (2011).
[34] K. P. Jayadevan and T. Y. Tseng, “One-dimensional ZnO nanostructures, J. Nanosci. and Nanotech., 12, 4409 (2012).
[35] S. Singh and P. Chakrabarti, “Simulation, fabrication and characterization of sol–gel deposited ZnO based thin film transistors, Sci. Adv. Mater., 4, 199 (2012).
[36] Z. Zheng, “Synthesis and optical properties of ZnO nanostructures, J. Nanoengineering and Nanomanufacturing, 2, 60 (2012).
[37] P. K. Samanta, “Characteristics of benzene assisted grown ZnO nanosheets, Sci. Adv. Mater., 4, 219 (2012).
[38] D. Narducci, “Biosensing at the nanoscale: there’s plenty of room inside, Sci. Adv. Mater., 3, 426 (2011).
[39] M. A. Kanjwal, F. A. Sheikh, N. A. M. Barakat, X. Li, H. Y. Kim, and I. S. Chronakis, “Co3O4, ZnO, Co3O4–ZnO nanofibers and their properties, J. Nanoengineering and Nanomanufacturing, 1, 196 (2011).
[40] J. Wu and D. Xue, “Progress of science and technology of ZnO as advanced material, Sci. Adv. Mater., 3, 127 (2011).
[41] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phy. Lett., 89, 123902 (2006) .
[42] K. Ogata, H. Dobashi, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Patterned growth of ZnO nanorods and enzyme immobilization toward the fabrication of glucose sensors, Physica E: Low-dimensional Systems and Nanostructures, 42, 2880 (2010).
[43] Y. Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, and L. Jin, “ZnO nanorods/Au hybrid nanocomposites for glucose biosensor, Biosen. Bioelectron., 26, 275 (2010).
[44] G. N. Dar, A. Umar, S. A. Zaidi, S. Baskoutas, S. H. Kim, M. Abaker, A. Al-Hajry, and S. A. Al-Sayari, “Fabrication of highly sensitive non-enzymatic glucose biosensor based on ZnO nanorods, Sci. Adv. Mater., 3, 901 (2011).
[45] K. Yang, G. W. She, H. Wang, X. M. Ou, X. H. Zhang, C. S. Lee, and S. T. Lee, “ZnO nanotube arrays as biosensors for glucose, J. Phys. Chem. C, 113, 20169 (2009).
[46] P. Norouzi, H. Ganjali, B. Larijani, M. R. Ganjali, F. Faridbod, and H. A. Zamani, “A glucose biosensor based on nanographene and ZnO nanoparticles using FFT continuous cyclic voltammetry, Int. J. Electrochem. Sci., 6, 5189 (2011).
[47] M. M. Rahman, G. Gruner, M. S. Al-Ghamdi, M. A. Daous, S. B. Khan, and A. M. Asiri, “Fabrication of highly sensitive phenyl hydrazine chemical sensor based on as-grown ZnO-Fe2O3 microwires, Int. J. Electrochem. Sci., 8, 520 (2013).
[48] R. Ahmad, N. Tripathy, J. H. Kim, and Y. B. Hahn, “Highly selective wide linear-range detecting glucose biosensors based on aspect-ratio controlled ZnO nanorods directly grown on electrodes, Sens. Actuators B, 174, 195 (2012).
[49] A. Ali, A. Ansari, A. Kaushik, P. R. Solanki, A. Barik, M. K. Pandey, and B. D. Malhotra, “Nanostructured zinc oxide film for urea sensor, Appl. Phys. Lett., 63, 2473 (2009).
[50] X. Liu, P. Lin, X. Yan, Z. Kang, Y. Zhao, Y. Lei, C. Li, H. Du, and Y. Zhang, “Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid, Sens. Actuators B, 176, 22 (2013).
[51] B. S. Kang, H. T. Wang, F. Ren, S. J. Pearton, T. E. Morey, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J Linthicum, “Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors, Appl. Phys. Lett., 91, 252103 (2007).
[52] S. Muhammad, U. Ali, O. Nur, M. Willander, and B. Danielsson, “Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate, IEEE T. Nanotech., 8, 678 (2009).
[53] T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. X. Wang, and X. P. Wang, “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes, Sens. Actuators B, 138, 344 (2009).
[54] F. F. Zhang, X. L. Wang, S. Y. Ai, Z. D. Sun, Q. Wan, Z. Q. Zhu, Y. Z. Xian, L. T. Jin, and K. Yamamoto, “Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Anal. Chim. Acta, 519, 155 (2004).
[55] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett., 89, 123902 (2006).
[56] S. M. Al-Hilli, A. Ost, P. Stralfors, and M. Willander, “ZnO nanorods as an intracellular sensor for pH measurements, J. Appl. Phys., 102, 187 (2007).
[57] S. M. Usman Ali, M. Kashif, Z. H. Ibupoto, M. Fakhar Alam, U. Hashim, and M. Willander, “Functionalized ZnO nanotubes arrays as electrochemical sensor for the selective determination of glucose, Micro & Nano Letters, 6, 609 (2011).
[58] J. Weber, S. Jeedigunta, and A. Kumar, “Fabrication and characterization of ZnO nanowire arrays with an investigation into electrochemical sensing capabilities, J. Nanomater., 1, 638523 (2008).
[59] S. M. Usman Ali, O. Nur, M. Willander, and B. Danielsson, “A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire, Sens. Actuators B, 145, 869 (2010).
[60] M. Ahmad, C. Pan, Z. Luo, and J. Zhu, “A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor, J. Phys. Chemi. C, 114, 9308 (2010).
[61] E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sole-gel method, Solid State Sci., 11, 456 (2009).
[62] C. L. Li, B. R. Huang, S. Chattopadhyay, K. H. Chen, and L. C. Chen, “Amorphous boron carbon nitride as a pH sensor, Appl. Phys. Lett., 84, 2676 (2004).
[63] L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate, Sens. Actuators B, 71, 106 (2000).
[64] C. E. Lue, T. C. Yu, C. M. Yang, D. G. Pijanowsk, and C. S. Lai, “Optimization of urea-EnFET based on Ta2O5 layer with post annealing, Sensors, 11, 4562 (2011).
[65] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method, IEEE Electron Devices Lett., 29, 284 (2008).
[66] L. H. Huang, S. H. Yeh, and C. T. Lee, “High frequency and low frequency noise of AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with gate insulator grown using photoelectrochemical oxidation method, Appl. Phys. Lett., 93, 043511 (2008).
[67] Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors, IEEE Electron Devices Lett., vol. 31, 183 (2010).
[68] Y. L. Chiou, C. S. Lee, and C. T. Lee, “Frequency and noise performances of photoelectrochemically etched and oxidized gate-recessed AlGaN/GaN MOS-HEMTs, J. Electrochem. Soci., 158, H477 (2011).

Chapter 2
[1] C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, and F. T. Hwang, “Investigation of indium tin oxide/zinc oxide multilayer ohmic contacts to n-type GaN isotype conjunction, Appl. Phys. Lett., 78, 3412 (2001).
[2] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution, Appl. Phys. Lett., 94, 071118 (2009).
[3] L. W. Lai and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films, Mater. Chemi. Phys., 110, 393 (2008).
[4] W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, and H. J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Appl. Phys. Lett., 85, 5052 (2004).
[5] C. T. Lee, Y. L. Chiou, and C. S. Lee, “AlGaN/GaN MOS-HEMTs with gate ZnO dielectric layer, IEEE Electron Device Lett., 31, 1220 (2010).
[6] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique, Appl. Phys. Lett., 91, 231113 (2007).
[7] X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors, Crit. Rev. Solid State Mat. Sci., 34,190 (2009).
[8] E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, “High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation, Sens. Actuator B, 141, 239 (2009).
[9] W. Water and S. E. Chen, “Using ZnO nanorods to enhance sensitivity of liquid sensor, Sens. Actuators B, 136, 371 (2009).
[10] X. T. Qiu, R. Tang, S. J. Chen, H. Zhang, W. Pang, and H. Yu, “pH measurements with ZnO based surface acoustic wave resonator, Electrochem. Commun., 13, 488 (2011).
[11] A. Fulati, S. M. U. Ali, M. Riaz, G. Amin , O. Nur, and M. Willander, “Miniaturized pH sensors based on zinc oxide nanotubes/nanorods, Sensors, 9, 8911 (2009).
[12] B. S. Kang, H. T. Wnag, F. Ren, S. J. Pearton, T. E. Morey, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, “Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors, Appl. Phys. Lett., 91, 252103 (2007).
[13] X. S. Fang, L. F. Hu, C. H. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors, Pure Appl. Chem., 82, 2185 (2010).
[14] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett., 76, 2011 (2000).
[15] E. Topoglidis, A. E. G. Cass, B. O’Regan, and J. R. Durrant, “Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films, J. Electroanal. Chem., 517, 20 (2001).
[16] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. 1, 70, 1807 (1974).
[17] R. E. G. Van Hal, J. C. T. Eijkel, and P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters, Sens. Actuator B, 24, 201 (1995).
[18] H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on pHpzc and surface potential of tin oxide gate ISFET, Mater. Chem. Phys., 59, 6 (1999).
[19] K. B. Oldham, “A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface, J. Electro. Chem., 613, 131 (2007).
[20] X. L. Luo, J. J. Xu, W. Zhao, and H. Y. Chen, “novel glucose ENFET based on the special reactivity of MnO2 nanoparticles, Biosens. Bioelectron., 19, 1295 (2004).
[21] E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer, Appl. Phys. Lett., 68, 1678 (1996).
[22] H. Y. Lee, C. T. Lee, and J. T. Yan, “Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes, Appl. Phys. Lett., 97, 111111, (2010).
[23] C. T. Lee, Y. S. Chiu, S. C. Ho, and Y. J. Lee, “Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor, Sensors, 4648 (2011).
[24] Y. S. Chiu and C. T. Lee, “pH Sensor Investigation of Various-Length Photoelectrochemical Passivated ZnO Nanorod Arrays, J. Electrochem. Soci., 158, J282 (2011).
[25] E. Ozensoy, C. H. F. Peden, and J. Szanyi, “Low temperature H2O and NO2 coadsorption on θ-Al2O3/NiAl(100) ultrathin films, J. Phys. Chem. B., 110, 8025 (2006).
[26] Z. J. Han, B. K. Tay, and P. C. T. Ha, “XPS studies on aluminum ions modified polyimide with the PIII technique, J. Appl. Phys., 101, 053301 (2007).

Chapter 3
[1] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO, Phys. Rev. Lett., 82, 2552 (1999).
[2] L. W. Lai, J. T. Yan, C. H. Chen, L. R. Lou, and C. T. Lee, “Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system, J. Master. Res., 24, 2252 (2009).
[3] R. W. Chung, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique, Appl. Phys. Lett., 91, 231113 (2007).
[4] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique, J. Appl. Phys., 108, 073119 (2010).

Chapter 4
[1] S. Dalui, C. C. Lin, H. Y. Lee, S. F. Yen, Y. J. Lee, and C. T. Lee, “Electroluminescence from solution grown n-ZnO nanorod/p-GaN-heterostructured light emitting diodes, J. Electrochemi. Sci., 157, H516 (2010).
[2] S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S. C. Gong, H. J. Chang, H. H. Park, and H. Jeon, “Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures, Semicond. Sci. Technol., 24, 035015 (2009).
[3] D. E. Yates, S. Levine, T. W. and Healy, “Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. 1, 70, 1807 (1974).
[4] R. E. G. Van Hal, J. C. T. Eijkel, and P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters, Sens. Actuator B, 24, 201 (1995).
[5] H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on pHpzc and surface potential of tin oxide gate ISFET, Mater. Chem. Phys., 59, 6 (1999).
[6] K. B. Oldham, “A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface, J. Electro. Chem., 613, 131 (2007).
[7] H. Wang, X. Wang, X. Zhang, X. Qin, Z. Zhao, Z. Miao, N. Huang, and Q. Chen, “A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires, Biosens. Bioelectron., 25, 142 (2009).
[8] F. Hu, S. Chen, C. Wang, R. Yuan, Y. Chai, Y. Xiang, and C. Wang, “ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation, Journal of Molecular Catalysis B: Enzymatic, 72, 298 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top