(3.238.186.43) 您好!臺灣時間:2021/02/28 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭為元
研究生(外文):Wei-YaunJheng
論文名稱:氧化鎳薄膜式化學感測器之研製
論文名稱(外文):Fabrication of Nickel Oxide (NiO)-Based Chemical Sensors
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chan Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:150
中文關鍵詞:氧化鎳延伸式閘極場效電晶體酸鹼值感測器可撓式基板微流道系統尿素感測器葡萄糖感測器
外文關鍵詞:Nickel oxideEGFETpH sensorFlexible substrateMicrochannel systemUrea sensorGlucose sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近年來,科技的發達使得人們壽命延長,疾病預防及病情監控已成為人們主要關心的話題,其中又以糖尿病及腎臟相關疾病最受到矚目,因此開發一良好的葡萄糖及尿素感測器已刻不容緩。在團隊先前的研究中,以氧化鎳薄膜製備的延伸式閘極場效電晶體具有極佳的酸鹼值感測特性包含良好的靈敏度、線性度、選擇性以及較小的遲滯變化與電壓偏移量。因此,吾人將酵素固定於氧化鎳薄膜之延伸式閘極,進一步將其製作成葡萄糖及尿素感測器。
首先,吾人將使用不同的材料和方法固定尿素酵素,並詳述各種固定化方法之流程及機制,並利用檢量線分析尿素感測元件之靈敏度。在本研究中,吾人使用玻璃和聚醯亞胺兩種基板,除了探討緩衝液之濃度及酸鹼值對尿素感測影響,亦量測尿素感測元件的暫態響應、操作次數及存放天數的穩定度。
接著,吾人將尿素感測器進行微小化,並結合自行設計的微流道系統,營造出一流動式並且可重複操作的測量環境。實驗結果顯示,尿素感測元件在靜態下量測擁有較寬廣的感測範圍及較長的壽命,而在動態下量測則具有較高的靈敏度與較高的抗干擾性。
最後,吾人使用兩種固定化方法完成葡萄糖感測元件,可發現將葡萄糖酵素固定在氧化鎳薄膜上亦擁有良好的感測特性。因此,氧化鎳薄膜極具開發尿素及葡萄糖生醫感測器之潛力。

In recent years, novel technologies are developed to make human life longer. Related topic about disease prevention and patient's condition monitoring are more concerned by human. Among them, diabetes and kidney disease are the most of attentive. Thus, to develop good glucose and urea sensors are very important. In previous studies, the NiO thin film based-extended gate field effect transistor (EGFET) shows good sensitivity, linearity, selectivity, and small hysteresis width and drift for pH sensing. Therefore, we used NiO thin film as our sensing membrane to fabricate glucose and urea sensors by immobilizing enzyme.
First, different methods are used to immobilize enzyme. Various processes and mechanisms of enzyme immobilization methods are detailedly described. Calibration curves are employed to analyze the urea sensing performance. In this study, the urea sensors are fabricated on glass and polyimide substrates, respectively. Influences of solute concentration, the pH value, buffer capacity, substrates on the sensing performance device are discussed and demonstrated. The reliability and storage stability are investigated as well.
Then, a miniaturized urea sensor is developed to integrate with a microfluidic system which is self-designed. The microchannel system is a dynamic sensing environment. Experimentally, the miniaturized urea sensor shows wide sensing linear region and a long life time in a static measurement. However, the miniaturized urea sensor shows a high sensitivity and a less interference by other ions.
Finally, glucose sensors are fabricated with two immobilized methods. Both of two devices demonstrate excellent glucose sensing performance. Therefore, the NiO thin film gives the promise for high-performance urea and glucose sensing applications.

Abstract iii
Table Captions 5
Figure Captions 6
Chapter 1 Introduction
1-1. Introduction to Semiconductor-Based pH Sensor 11
1-2. The Site-binding Model and Mechanism of EGFET pH Sensor 13
1-3. The Mechanisms of Urea and Glucose Sensors 16
1-4. Introduction to Michaelis-Menten Kinetics 17
1-5. The Debye–Hückel Theory 19
1-6. Introduction to the Microchannel System 20
1-7. Thesis Organization 21
Chapter 2 Experimental Details
2-1. Fabrication of NiO-Based Urea Biosensor 23
2-1-1. Preparation of Device Substrate 23
2-1-2. Fabrication of NiO-Based pH EGFET 24
2-1-3. Enzyme Immobilization of NiO-Based Urea Sensor 25
2-2. Fabrication of a NiO-Based Miniaturized Urea Sensor and a Microchannel System 25
2-2-1. Preparation of Device Substrate 26
2-2-2. Fabrication of NiO-Based Miniaturized pH Electrode (ME) 26
2-2-3. Enzyme Immobilization of a NiO-Based Miniaturized Urea Sensor 27
2-2-4. Fabrication of a Microchannel System 27
2-3. Fabrication of a NiO-Based Glucose Biosensor 28
2-4. Sensing Measurement 30
2-4-1. pH Sensing Measurement Setup 30
2-4-2. Urea and Glucose Sensing Measurement Setup 30
2-5. Material Analyses 32
2-5-1. Scanning Electron Microscopy (SEM) 32
2-5-2. Atomic Force Microscopy (AFM) 32

Chapter 3 Characteristics of NiO-Based Urea Sensors
3-1. Introduction 34
3-2. Device Fabrication 35
3-3. Experimental Results and Discussion 36
3-3-1. Urea Membrane Modified by PVC-COOH 36
3-3-2. Influence of Substrate 36
3-3-3. Influence of pH Value 37
3-3-4. Influence of Buffer Capacity 37
3-3-5. Response and Recovery Time 38
3-3-6. Interferences 39
3-3-7. Storage Stability of Urea Sensors 40
3-3-8. Repeatability of Urea Sensors 40
3-4. Summary 41
Chapter 4 Fabrication and Integration of NiO-Based Miniaturized Urea Sensors and a Microchannel System
4-1. Introduction 43
4-2. Device Fabrication 44
4-3. Experimental Results and Discussion 45
4-3-1. Influence of pH Sensing Area 45
4-3-2. Measurement of Microchannel System 46
4-3-3. Measuring within Microchannel System 46
4-3-4. Response Time and Recovery Time 47
4-3-5. Interferences 47
4-3-6. Storage Stability of Miniaturized Urea Sensors 48
4-3-7. Repeatability of a Miniaturized Urea Sensor 48
4-4. Summary 49
Chapter 5 Characteristics of NiO-Based Glucose Sensors
5-1. Introduction 50
5-2. Device Fabrication 51
5-3. Experimental Results and Discussion 52
5-3-1. Entrapment Method of Enzyme Membrane 52
5-3-2. Cross-linking Method of Enzyme Membrane 53
5-4. Summary 54
Chapter 6 Conclusion and Future Works
6-1. Conclusion 55
6-2. Future Works 57
References 59
Tables 74
Figures 83

Eftekhari, “pH sensor based on deposited film of lead oxide on aluminum substrate electrode, Sens. Actuator B-Chem, vol. 88, pp. 234-238, 2003.
[2] P. Shuk and K.V. Ramanujachary, “New metal-oxide-type pH sensors, Solid state ion., vol. 86-88, pp. 1115-1120, 1996.
[3] C. M. Ngyen, W. D. Huang, S. Rao, H. Cao, U. Tata, M. Chiao, and J. C. Chiao, “Sol-gel iridium oxide-based pH sensor array on flexible polyimide substrate, IEEE Sens. J., vol. 13, no. 10, pp. 3857-3864, 2013.
[4] C. E. Lue, I. S. Wang, C. H. Huang, Y. T. Shiao, H. C. Wang, C. M. Yang, S. H. Hsu, C. Y. Chang, W. Wang, and C. S. Lai, “pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process, Microelectron. Reliab., vol. 52, pp. 1651-1654, 2012.
[5] M. G. Benjamin, A. Hus, H. Wang, V. Vinciguerra, F. Pappalardo, L. Occhipinti, E. Guidetti, S. Coffa, J. Kong, and T. Palacios “pH sensing properties of graphene solution-gated field-effect transistors, J. Appl. Phys., vol. 114, no. 8, pp. 084505, 1993.
[6] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., vol. 17, no. 1, pp. 70-71, 1970.
[7] B. D. Liu, Y. K. Su, and S. C. Chen, “Ion sensitive field effect transistor with silicon nitride gate for pH sensing, INT. J. Electronics, vol. 67, no. 1, pp. 59-63, 1989.
[8] K. Chen, G. Li, H. Lu, and L. Chen, “Effect of total hydrogen content in silicon nitride sensitive film on performance of ISFET, Sens. Actuator B-Chem., vol. 12, no. 1, pp. 23-27, 1993.
[9] H. Abe, M. Esashi, and T. Matsuo, “ISFETs using inorganic gate thin-films, IEEE Trans. Electron Devices, vol. 26, no. 12, pp. 1939-1944, 1979.
[10] J. C. Chou and J. L Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing, Sens. Actuator B-Chem., vol. 62, no. 2, pp. 81-87, 2000.
[11] J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide, Sens. Actuator B-Chem., vol. 76, no. 1-3, pp. 624-628, 2001.
[12] S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs, Sens. Actuators B-Chem., vol. 7, pp. 367-370, 1992.
[13] H. Hara and T. Ohta, “Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor, Sens. Actuator B-Chem., vol. 32, pp. 115-119, 1996.
[14] Y. H. Liao and J. C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuator B- Chem., vol. 128, pp. 603-612, 2008.
[15] J. L. Chiang, J. C. Chou, Y. C. Chen, G. S. Liau, and C. C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 4973-4977, 2003.
[16] J. L. Chiang, J. C. Chou, and Y. C. Chen, “Study on light and temperature properties of AlN pH-Ion-sensitive Field-Effect transistor devices, Japanese Journal of Applied Physics, vol. 44, pp. 4831-4837, 2005.
[17] P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors, Appl. Phys.s Lett., vol. 87, pp. 143508-3, 2005.
[18] E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method, Solid State Sci., vol. 11, pp. 456-460, 2009.
[19] R. Zhao, M. Xu, J. Wang, and G. Chen, “A pH sensor based on the TiO2 nanotube array modified Ti electrode, Electrochim. Acta, vol. 55, pp. 5647-5651, 2010.
[20] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications, Sens. Actuator B-Chem., vol. 50, pp. 104-109, 1998.
[21] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane, Mater. Chem. Phys., vol. 63, pp. 19-23, 2000.
[22] T. Akiyama, Y. Ujihira, Y. Okabe, T. Sugano, and E. Niki, “Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing, IEEE Transactions on Electron Devices, vol. 29, pp. 1936-1941, 1982.
[23] P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuator B-Chem., vol. 88, pp. 1-20, 2003.
[24] R. M. Cohen, R. J. Huber, J. Janata, R. W. Ure, and S. D. Moss, “Study of the insulator materials used in ISFET gates, Thin solid films, vol. 53, no. 2, pp. 169-173, 1978
[25] J. van der spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe, Sens. Actuator B-Chem., vol. 4, no.0, pp. 291-298, 1983.
[26] H. Ecken, S. Ingebrandt, M. Krause, D. Richter, M. Hara, and A. Offenhausser, “64-Channel extened gate electrode arrays for extracellular signal recording, Electrochim. Acta, vol. 48, no. 20-22, pp. 3355-3362, 2003
[27] J. C. Chen, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor, Sens. Actuator B-Chem., vol. 91, no. 1-3, pp. 180-186, 2003.
[28] L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET, Mater. Chem.Phys., vol. 70, no. 1, pp. 12-16, 2001.
[29] J. C. Chou, J. L. Chiang, and C. L. Wu, “pH and procaine sensing characteristics of extended-gate field-effect transistor based on indium tin oxide glass, Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 4838-4832, 2005.
[30] J. L. Lin, Y. M. Chu, S. H. Hsaio, Y. L. Chin, and T.-P. Sun, “Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors, Jpn. J. Appl. Phy., vol. 45, no.10A, pp. 7999-8004, 2006.
[31] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface, Journal of the Chemical Society, Faraday Transactions 1, vol. 70, pp. 1807, 1974.
[32] C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Trans. On electron devices, vol. ED-33, no. 1, pp. 8-18, 1986.
[33] R. E. G. van Hal, J. C. T. Eijkel, and P. Bergveld, “A general model to describe the electrostatic potential at electrolyte oxide interfaces, Adv. Colloid Interface Sci., vol. 69, no.1-3, pp. 31-62, 1996.
[34] S. Caras and J. Janata, “Field effect transistor sensitive to penicillin, Analytical Chemistry, vol. 52, no. 12, pp. 1935-1937, 1980.
[35] K. B. Oldham, “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface, J. Electroanal. Chem., vol. 613, no. 2, pp. 131-138, 2008.
[36] O. A. Boubriak, A. P. Soldatkin, N. F. Starodub, A. K. Sandrovsky, and A. K. El'skaya, “Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor, Sens. Actuator B-Chem., vol. 27, no.1–3, pp. 429-431, 1995.
[37] D. G. Pijanowska and W. Torbicz, “pH-ISFET based urea biosensor, Sens. Actuator B-Chem., vol. 44, no.1–3, pp. 370-376, 1997.
[38] N. Jaffrezic-Renault and C. Martelet, “Semiconductor-based micro-biosensors, Synthetic Metals, vol. 90, no.3, pp. 205-210, 1997.
[39] C. Jiménez, J. Bartrol, N. F. de-Rooij, and M. Koudelka-Hep, “Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction, Analytica Chimica Acta, vol. 351, no.1-3, pp. 169-176, 1997.
[40] C. Puig-Lleixà, C. l. Jiménez, J. Alonso, and J. Bartrolı́, “Polyurethane–acrylate photocurable polymeric membrane for ion-sensitive field-effect transistor based urea biosensors, Analytica Chimica Acta, vol. 389, no.1–3, pp. 179-188, 1999.
[41] A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, and I. Willner, “Enzyme monolayer-functionalized field-effect transistors for biosensor applications, Sens. Actuator B-Chem., vol. 70, no.1-3, pp. 222-231, 2000.
[42] C. W. Pan, J. C. Chou, T. P. Sun, and S. K. Shen, “Solid-state urea biosensor based on the differential method, Sensors Journal, IEEE, vol. 6, no.2, pp. 269-275, 2006.
[43] L. L. Chi, L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung, and S. K. Hsiung, “Study on separative structure of EnFET to detect acetylcholine, Sens. Actuator B-Chem., vol. 71, no.1-2, pp. 68-72, 2000.
[44] D. V. Gorchkov, S. Poyard, A. P. Soldatkin, N. Jaffrezic-Renault, and C. Martelet, “Application of the charged polymeric materials as additional permselective membranes for improvement of the performance characteristics of urea-sensitive ENFETs 2. Urea determination in blood serum, Materials Science and Engineering: C, vol. 5, no.1, pp. 29-34, 1997.
[45] W. Sant, M. L. Pourciel, J. Launay, T. D. Conto, A. Martinez, and P. Temple-Boyer, “Development of chemical field effect transistors for the detection of urea, Sens. Actuator B-Chem., vol. 95, no.1-3, pp. 309-314, 2003.
[46] J. Q. Wang, J. C. Chou, T. P. Sun, S. K. Hsiung, and G. B. Hsiung, “pH-based potentiometrical flow injection biosensor for urea, Sens. Actuator B-Chem., vol. 91, no.1-3, pp. 5-10, 2003.
[47] J. Muñoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret, and C. Dominguez, “Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing, Biosens. Bioelectron., vol. 12, no.7, pp. 577-585, 1997.
[48] A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier, “A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip, Talanta, vol. 50, no.1, pp. 219-226, 1999.
[49] N. H. Chou, J. C. Chou, T. P Sun, and K. H. Shen, “Study on the disposable urea biosensors based on PVC-COOH membrane ammonium ion-selective electrodes, Sensors Journal, IEEE, vol. 6, no. 2, pp. 262-268, 2006.
[50] M. L. Hamlaoui, K. Reybier, M. Marrakchi, N. Jaffrezic-Renault, C. Martelet, R. Kherrat, and A. Walcarius, “Development of a urea biosensor based on a polymeric membrane including zeolite, Analytica Chimica Acta, vol. 466, no.1, pp. 39-45, 2002.
[51] J. Shalini, K. J. Sankaran, and C. Y. Lee, “An amperometric urea biosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode, Biosens. Bioelectron., vol. 56, pp. 64-70, 2014.
[52] T. Kuzuya, S. Nakagawa, J. Satoh, Y. Kanazawa, Y. Iwamoto, M. Kobayashi, K. Nanjo, A. Sasaki, Y. Seino, C. Ito, K. Shima, K. Nonaka, and T. Kadowaki, “Report of the Committee on the classification and diagnostic criteria of diabetes mellitus, Diabetes Res. Clin. Pr., vol. 55, no.1, pp. 65-85, Jan. 2002.
[53] H. Chahinian, Y. Ben Ali, A. Abousalham, S. Petry, L. Mandrich, G. Manco, S. Canaan, L. Sarda, “Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: Comparison with non-lipolytic and lipolytic carboxylesterases, Bba.-Mol. Cell Biol. L., vol. 1738, no. 1-3, pp. 29-36, 2005.
[54] J. W. Hwang, S. K. Kim, J. S. Lee, I. S. Kim, “Gene expression of the biosynthetic enzymes and biosynthesis of starch during rice grain development, Plant Biology, vol. 48, no. 4, pp. 448-455, 2005.
[55] Y. L. Yu, M. Shan, F. Hua, W. Xiao, X. Q. Chu, “Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil, J. Agr. Food. Chem., vol. 54, no. 26, pp. 10070-10075, 2006.
[56] N. H. Chou, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Differential type solid-state urea biosensors based on ion-selective electrodes, Sens. Actuator B-Chem., vol. 130, no.1, pp. 359-366, 2008.
[57] P. A. Hammond, D. Ali, and D. R. S. Cumming, “Design of a single-chip pH sensor using a conventional 0.6-mu m CMOS process, Sensors Journal, IEEE, vol. 4, no.6, pp. 706-712, 2004.
[58] C. S. Lai, T. F. Lu, C. M. Yang, Y. C. Lin, D. G. Pijanowska, and B. Jaroszewicz, “Body effect minimization using single layer structure for pH-ISFET applications, Sens. Actuator B-Chem., vol. 143, pp. 494-499, 2010.
[59] Z. Kiomars, J. C. Mohammad, S. Mojtaba, H. Saman, A. Sakineh, Q. Mohammad, “Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore, Talanta, vol. 93, pp. 37-43, 2012.
[60] J. C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system, Microelectron. Reliab., vol. 50, no. 5, pp. 753-756, 2010.
[61] R. S. Goody, and K. A. Johnson, “The original Michaelis constant: translation of the 1913 Michaelis–Menten paper, Biochemistry, vol. 50, no. 39, pp. 8264-8269, 2011.
[62] P. Debye and E. Hückel, “The theory of electrolytes I. The lowering of the freezing point and related occurrences, Physikalische Zeitschrift, vol. 24, pp. 185-206, 1923.
[63] G. D. Xia, J. Jiang J. Wang Y. L. Zhai, and D. D. Ma, “Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks, Int. J. Heat Mass Transf., vol. 80, pp. 057001, 2014.
[64] A. J. Dy, A. Cosmanescu, J. Sluka, J. A. Glazier, D. Stupack, and D. Amarie, “Fabricating microfluidic valve master molds in SU-8 photoresist, J. Micromech. Microeng., vol. 24, no. 5, pp. 439-447, 2014.
[65] Y. Huang, and A. J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors, Lab Chip, vol. 13, no. 19, pp. 3929-3934, 2013.
[66] J. T. Cao, Y. D. Zhu, R. K. Rana, and J. J. Zhu, “Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells, Biosens. Bioelectron., vol. 51, pp. 97-102, 2014.
[67] M. M. Picher, S. Kupcu, C. J. Huang, J. Dostalek, D. Pum, U. B. Sleytr, and P. Ertl, “Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells, Lab Chip, vol. 13, no. 9, pp. 1780-1789, 2013.
[68] F. Liu, Y. Piao, J. S. Choi, and T. S. Seo, “Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells, Biosens. Bioelectron., vol. 50, pp. 387-392, 2013.
[69] H. Yu, D. Li, R C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid, Microsyst. Technol., vol. 19, no. 7, pp. 989-94, 2013.
[70] J. N. Patel, B. L. Gray, B. Kaminska, N. C. Wu, and B. D. Gates, “SU-8- and PDMS-based hybrid fabrication technology for combination of permanently bonded flexible and rigid features on a single device, J. Micromech. Microeng., vol. 23, no. 6, pp. 065029, 2013.
[71] D. V. Andreev, L. L. Makarshin, A. G. Gribovskii, D. Y. Yushchenko, E. E. Sergeev, E. G. Zhizhina, Z. P, Pai, and V. N. Parmon, “Triethanolamine synthesis in a continuous flow microchannel reactor, Chem. Eng. J., vol. 259, pp. 252-256, 2015.
[72] P. O. Lopez-Montesinos, A. V. Desai, and P. J. A. Kenis , “A three-dimensional numerical model of a micro laminar flow fuel cell with a bridge-shaped microchannel cross-section, J. Power Sources, vol. 269, pp. 542-549, 2015.
[73] C. W. Liao, J. C. Chou, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, “Effects of tin oxide sputtered on a carbon electrode for fabricating glucose biosensor, J. Electrochem. Soc., vol. 155, no. 7, pp. J181-186, 2008.
[74] E. Wolf, “Solution of the phase problem in the theory of structure determination of crystals from X-Ray diffraction experiments, Phys. Rev. Lett., vol. 103, no. 7, pp. 075501, 2009.
[75] Y. Roiter, and S. Minko, “AFM single molecule experiments at the solid−liquid interface: in situ conformation of adsorbed flexible polyelectrolyte chains, J. Am. Chem. Soc., vol.127, no. 45, pp. 15688-15689, 2005.
[76] B. Bhushan, K. J. Kwak, and M. Palacio, “Nanotribology and nanomechanics of AFM probe-based data recording technology, J. Phys.-Condes. Matter, vol.20, no. 36, pp. 365207, 2008.
[77]H. S. Yang, Y. F. Wang, S. J. Lai, H. J. Li, and F. S. Chen, “Application of atomic force microscopy as a nanotechnology tool in food science, J. Food Sci., vol.72, no. 4, pp. R65-R75, 2007.
[78] F. C. Simeone, C. Albonetti, amd M. Cavallini, “Progress in Micro- and Nanopatterning via Electrochemical Lithography, J. Phys. Chem. C, vol.113, no. 44, pp. 18987-18994, Nov. 2009.
[79] S. R. Cohen, and A. Bitler, “Use of AFM in bio-related systems, Curr. Opin. Colloid Interface Sci., vol.13, no. 5, pp. 316-325, 2008.
[80] Y. F. Dufrene, “Towards nanomicrobiology using atomic force microscopy, Nat. 47 Rev. Microbiol., vol.6, no. 9, pp. 674-680, 2008.
[81] A. Engel, and D. J. Muller, “Observing single biomolecules at work with the atomic force microscope, Nat Struct Biol, vol.7, no. 9, pp. 715-718, 2000.
[82] B. Strehlitz, B. Gründig, and H. Kopinke, Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions, Analytica Chimica Acta, vol. 403, no.1-2, pp. 11-23, 2000.
[83] P. Bertocchi, D. Compagnone, and G. Palleschi, Amperometric ammonium ion and urea determination with enzyme-based probes, Biosens. Bioelectron, vol. 11, no.1–2, pp. 1-10, 1996.
[84] S. B. Adeloju, S. J. Shaw, and G. G. Wallace, Polypyrrole-based amperometric flow injection biosensor for urea, Analytica Chimica Acta, vol. 323, no.1-3, pp. 107-113, 199.
[85] B. Liu, R. Hu, and J. Deng, Studies on a potentiometric urea biosensor based on an ammonia electrode and urease, immobilized on a γ-aluminum oxide matrix, Analytica Chimica Acta, vol. 341, no.2-3, pp. 161-169, 1997.
[86] T. Osaka, S. Komaba, M. Seyama, and K. Tanabe, High-sensitivity urea sensor based on the composite film of electroinactive polypyrrole with polyion complex, Sens. Actuator B-Chem., vol. 36, no.1–3, pp. 463-469, 1996.
[87] S. Komaba, M. Seyama, T. Momma, and T. Osaka, Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole, Electrochimica Acta, vol. 42, no.3, pp. 383-388, 1997.
[88] R. Koncki, I. Wałcerz, and E. Leszczyńska, Enzymatically modified ion-selective electrodes for flow injection analysis, J. Pharm. Biomed. Anal., vol. 19, no.3-4, pp. 633-638, 1999.
[89]A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs, Biosens. Bioelectron, vol. 19, no. 2, pp. 131-135, 2003.
[90] S. Zamponi, B. Lo Cicero, M. Mascini, L. Della Ciana, and S. Sacco, Urea solid-state biosensor suitable for continuous dialysis control, Talanta, vol. 43, no.8, pp. 1373-1377, 1996.
[91] A. Ramsing, J. Růžička, and E. H. Hansen, A new approach to enzymatic assay based on flow-injection spectrophotometry with acid-base indicators, Analytica Chimica Acta, vol. 114, no.FEB, pp. 165-181, 1980
[92]F. Roch-Ramel, An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens, Analytical Biochemistry, vol. 21, no.3, pp. 372-381, 1967.
[93] S. Liu, F. Shi, L. Chen, X. Su, “Dopamine functionalized CuInS2 quantum dots as a fluorescence probe for urea, Sens. Actuator B-Chem., vol. 191, pp. 246-251, 2014.
[94] L. Bi, X. T. Dong, and Y. H. Yu, “Room-temperature phosphorescence sensor based on manganese doped zinc sulfide quantum dots for detection of urea, J. Lumines., vol. 153, pp. 356-360, 2014.
[95] J. C. Soares, A. Brisolari, V. D. C. Rodrigues, E. A. Sanches, and D. Goncalves, “Amperometric urea biosensors based on the entrapment of urease in polypyrrole films, React. Funct. Polym., vol. 72, no. 2, pp. 148-152, 2012.
[96] A. S. E. Meibodi, S. Haghjoo, “Amperometric urea biosensor based on covalently immobilize urease on an electrochemically polymerized film of polyaniline containing MWCNTs, Synthetic Metals, vol. 194, pp. 1-6, 2014.
[97] D. J. Pasto, G. R. Meyer, and S. Z. Kang, “A urea-specific enzyme electrode, J. Am. Chem. Soc., vol. 91, no. 8, pp. 2164& , 1969.
[98] A. Radomska, S. Singhal, H. Ye, M. Lim, A. Mantalaris, X. Yue, E. M. Drakakis, C. Toumazou, and A. E. G. Cass, “Biocompatible ion selective electrode for monitoring metabolic activity during the growth and cultivation of human cells, Biosens. Bioelectron, vol. 24, no. 3, pp. 435-441, 2008.
[99] V. V. Cosofret, R. P. Buck, and M. Erdosy, “Carboxylated poly(vinyl chloride) as a substrate for ion sensors effects of native ion exchange on responses, Anal. Chem., vol. 66, no. 21, pp. 3592-3599, 1944.
[100] W. C. A. Koh, E. S. Choe, D. K. Lee, S. C. Chang, and Y. B. Shim, “Monitoring the activation of neuronal nitric oxide synthase in brain tissue and cells with a potentiometric immunosensor, Biosens. Bioelectron, vol. 25, no. 1, pp. 211-217, 2009.
[101] K. Saeedfar, L. Y. Heng, T. L. Ling, and M. Rezayi, “Potentiometric urea biosensor based on an immobilised Fullerene-Urease Bio-Conjugate, Sensors, vol. 13, no. 12, pp. 16851-16866, 2013.
[102] N. A. Hirst, L. D. Hazelwood, D. G. Jayne, and P. A. Millner, “An amperometric lactate biosensor using H2O2 reduction via a prussian blue impregnated poly(ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis, Sens. Actuator B-Chem., vol. 186, pp. 674-680, 2013.
[103] P. A. Elisabet, A. Llibertat, C. P. Nieves, and G. R. Javier, “Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples, Biosens. Bioelectron. , vol. 39, no. 1, pp. 163-169, 2013
[104] C. H. Kao, H. Chen, L. T. Kuo, J. C. Wang, Y. T. Chen, Y. C. Chu, C. Y. Chen, C. S. Lai, S. W. Chang, and C. W. Chang, “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure., Sens. Actuators B-Chem., vol. 194, pp. 419-426, 2014.
[105] C. M. Yang, I. S. Wang Y. T. Lin, C. H. Huang, T. F. Lu, C. E. Lue D.G. Pijanowska, M. Y. Hua, and C. S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection., Sens. Actuators B, Chem., vol. 187, pp. 274-279, 2013.
[106] B. Lakard, D. Magnin, O. Deschaume G. Vanlancker, K. Glinel, S. D. Champagne, B. N. P. Bertrand, S. Yunus, and A. M. Jonas, “Optimization of the structural parameters of new potentiometric pH and urea sensors based on polyaniline and a polysaccharide coupling layer., Sens. Actuator B-Chem., vol. 166, pp. 794-801, 2012.
[107] Rajesh, N. Puri, S. K. Mishra, Mariam J. Lasker, and A. K. Srivastava, “Microstructural and potential dependence studies of urease-immobilized gold nanoparticles–polypyrrole composite film for urea detection, Appl. Biochem. Biotechnol., vol. 172, no. 2, pp. 1055-1069, 2012.
[108] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, J. Microelectromech. Syst., vol. 9, no. 1, pp. 76-81, 2000.
[109] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, vol. 288, no. 5463, pp. 113-116, 2000.
[110] C. Neils, Z. Tyree, B. Finlayson, and A. Floch, “Combinatorial mixing of microfluidic streams, Lab Chip, vol. 4, no. 4, pp. 432-350, 2004.
[111] I. G. Foulds and M. Parameswaran, “A planar self-sacrificial multilayer SU-8-based MEMS process utilizing a UV-blocking layer for the creation of freely moving parts, J. Micromech. Microeng., vol. 16, no. 10, pp. 2019-2115, 2006.
[112] M. C. Belanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review, J. Biomed. Mater. Res. Part A, vol. 58, no. 5, pp. 467-477, 2001.
[113] M. J. Schoning, M. Jacobs, A. Muck, D. T. Knobbe, J. Wang, M. Chatathi, and S. Spillmann, “Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection, Sens. Actuator B-Chem., vol. 108, no. 1-2, pp. 688-694, 2005.
[114] W. J. Chang, D. Akin, M. Sedlak, M. R. Ladisch, and R. Bashir, “Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture, Biomed. Microdevices, vol. 5, no. 4, pp. 281-290, 2005.
[115] L. Tang and N. Y. Lee, “A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature, Lab Chip, vol. 10, no. 10, pp. 1274-1280, 2010.
[116] S. M. Westwood, S. Jaffer, and B. L. Gray, “Enclosed SU-8 and PDMS microchannels with integrated interconnects for chip-to-chip and world-to-chip connections, J. Micromech. Microeng., vol. 18, no. 6, pp. 064014, 2008.
[117] J. N. Patel, B. Kaminska, B. L. Gray, and B. D. Gates, “PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications, J. Micromech. Microeng., vol. 18, no. 9, pp. 095028, 2008
[118] J. N. Patel, B. Kaminska, B. L. Gray, and B. D. Gates, “A sacrificial SU-8 mask for direct metallization on PDMS, J. Micromech. Microeng., vol. 19, no. 11, pp. 115014, 2009.
[119] J. C. Chou, C. Y. Lin, Y. H. Liao, J. T. Chen, Y. L. Tsai, J. L. Chen, and H. T. Chou, “Data fusion and fault diagnosis for flexible arrayed pH sensor measurement system based on LabVIEW, IEEE Sens. J., vol. 14, no. 5, pp. 1405-1411, 2014.
[120] H. H. Li, C. E. Yang, C.C. Kei, C. Y. Su, W. S. Dai, J. K. Tesng, P. Y. Yang, J. C. Chou, and H .C. Cheng, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor, Thin Solid Films, vol. 529, pp. 173-176, 2013.
[121] K. Xu, G. Xu, J. Lv, J. Cui, and Y. Wu , “Pt nanoparticles modified Au nanowire array for amperometric and potentiometric detection of glucose “J. Solid State Electrochem., vol. 17, no. 9, pp. 2381-2389, 2013.
[122] C. M. Yang, J. C. Wang, T. W. Chiang Y. T. Lin T. W. Juan T. C. Chen M. Y. Shih, C. E. Lue, and C. S. Lai, “Nano-IGZO layer for EGFET in pH sensing characteristics, Thin Solid Films, pp. 480-482, 2013.
[123] W. D. Huang, S. Deb, Y. S. Seo, S. Rao M. Chiao, and J. C. Chiao, “A passive radio-drequency pH-sensing tag for wireless food-quality monitoring., IEEE Sens. J., vol. 12, no. 3, pp. 487-495, 2012.
[124] J. C. Chou, T. Y. Cheng, G. C. Ye, Y. H. Liao, S. Y. Yang and H. T. Chou, “Fabrication and investigation of arrayed glucose biosensor based on microfluidic framework., IEEE Sens. J., vol. 13, no. 11, pp. 4180-4187, 2013.
[125] Y. H. Lin, S. H. Wang, M. H. Wu, T. M. Pan, C. S. Lai, J. D. Luo and C. C. Chou, “Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads, Biosens. Bioelectron., vol. 43, no. 15, pp. 328-335, 2013.
[126] C. J. Huang, J. L. Lin, P. H. Chen, M. J. Syu and G. B. Lee, “An integrated thermal sensor array for multianalyte determination demonstrated with glucose, urea and penicillin, 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Digest of Technical Papers (IEEE Cat. No.95TH8173), vol. 1, pp. 501-3, 1995.
[127] L. T. Ying, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung, and S. K. Hsiung, “Glucose ENFET doped with MnO2 powder, Sens. Actuator B-Chem., vol. 76, no. 1-3, pp. 187-192, 2001.
[128] D. Baratella, M. Magro, G. Sinigalia, R. Zboril, G. Salviulo, F. Vianello, “A glucose biosensor based on surface active maghemite nanoparticles, Biosens. Bioelectron., vol. 45, pp. 13-18, 2013.
[129] C. Li, Y. Liu, L. Li, Z. Du, S. Xu, M. Zhang, X Yin, and T. Wang, “A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose, Talanta, vol. 77, no. 1 pp. 455-459, 2008.
[130] B. Peng, J. Lu, A. S. Balijepalli, T. C. Major, B. E. Cohan, M. E. Meyerhoff, “Evaluation of enzyme-based tear glucose electrochemical sensors over a wide range of blood glucose concentrations, Biosens. Bioelectron., vol. 49, pp. 204-209, 2013.
[131] C. Wei, J. C. Choub, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, Preliminary investigations on a glucose biosensor based on the potentiometric principle,“ Sens. Actuators B-Chem., vol. 123, no.2 pp. 720-726, 2006.
[132] K. Khun, Z. H. Ibupoto, J. Lu, M. S. AlSalhi, M. Atif, A. A. Ansari, and M. Willander, “Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode “Sens. Actuators B- Chem., vol. 173, pp. 698-703, 2012.
[133] C. Q. Chey, Z. H. Ibuppto, K. Khun, O. Nur, and M. Willander, “Indirect determination of mercuryion by inhibition of a glucose biosensor based on ZnO nanorods “Sensor, vol. 12, no. 11, pp. 15063-15077, 2012.
[134] Z. Yang C. Zhang, J. Zhang , and W. Bai, “Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles, “Biosens. Bioelectron, vol. 51, no. 15, pp. 268–273, 2014.
[135] H. E. Heise, A. Bittner, T. Koschinsky, and F. A. Gries, “Ex-vivo determination of blood glucose by microdialysis in combination with infrared attenuated total reflection spectroscopy, J. Anal. Chem., vol. 359, no. 1, pp. 83-87, 1997.
[136] Q. Liu, H. Li, Q. Zhao, R Zhu., Y Yang, Q Jia, B. Bian, L. Zhuo, “Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe3O4 nanocomposites, Materials Science and Engineering: C (Materials for Biological Applications), vol. 41, pp. 142-151, 2014.
[137] B. Yuan, C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, D. Zhang, and Q. Huo, “Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor, Electrochim. Acta, vol. 104, pp. 78-83, 2013.
[138] K. A. Mauritz and R. B. Moore, “State of understanding of Nafion, Chem. Rev., vol. 104, no.10, pp. 4535-4585, 2004.
[139] X. Zhang, Jin, X. Y. Jin, C. Y. Xu Shen, X.Y. Shen, “Preparation and characterization of glutaraldehyde crosslinked chitosan nanofiltration membrane, J. Appl. Polym. Sci., vol. 128, no. 6, pp. 3365-3671, 2013.
[140] M. Azami, M. Rabiee, F. Moztarzadeh, “Glutaraldehyde Cross linked Gelatin/hydroxyapatite Nanocomposite Scaffold, Engineered via Compound Techniques, Polym. Composite., vol. 31, no. 12, pp. 2112-2120, 2010.
[141] P. Kensingh, W. Chulalaksananukul, S. Charuchinda, “Lipase immobilization on scirpus grossus L.f. fiber support by glutaraldehyde-crosslinked technique for biodiesel synthesis, J. Biotechnol., vol. 150, no. 1, pp. 163, 2010.
[142] M. Kawakami, H. Koya, and S. Gondo, “Immobilization of enzyme to platinum electrode and Its use as enzyme electrode, Appl. Biochem. Biotechnol., vol. 28-9, pp. 211-219, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔