|
[1]K. Wolff, L. Goldsmith, B. Gilchrest, S. Katz, A. Paller, and D. Leffell, Fitzpatrick's Dermatology In General Medicine, Seventh Edition: Two Volumes: Mcgraw-hill, 2007. [2]C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, et al., Higher harmonic generation microscopy for developmental biology, Journal of structural biology, vol. 147, pp. 19-30, 2004. [3]S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, In vivo harmonic generation biopsy of human skin, Journal of biomedical optics, vol. 14, pp. 060505-060505-3, 2009. [4]M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy, Biomedical optics express, vol. 2, p. 2317, 2011. [5]Y.-H. Cheng, C.-F. Lin, T.-F. Shih, and C.-K. Sun, A novel intravital multi-harmonic generation microscope for early diagnosis of oral cancer, SPIE BiOS, pp. 85770R-85770R-6, 2013. [6]M.-R. Tsai, Y.-W. Chiu, M. T. Lo, and C.-K. Sun, Second-harmonic generation imaging of collagen fibers in myocardium for atrial fibrillation diagnosis, Journal of biomedical optics, vol. 15, pp. 026002-026002-6, 2010. [7]S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy, IEEE J. Sel. Top. Quantum Electron, vol. 16, pp. 478-492, 2010. [8]T. Yasui, M. Yonetsu, R. Tanaka, Y. Tanaka, S.-i. Fukushima, T. Yamashita, et al., In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr: Forsterite laser, Journal of biomedical optics, vol. 18, pp. 031108-031108, 2013. [9]J. Varani, M. K. Dame, L. Rittie, S. E. Fligiel, S. Kang, G. J. Fisher, et al., Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation, The American journal of pathology, vol. 168, pp. 1861-1868, 2006. [10]E. Sivridis, A. Giatromanolaki, and M. I. Koukourakis, “Stromatogenesis and tumor progression, International Journal of Surgical Pathology, vol. 12, pp. 1-9, 2004. [11]E. Brown and T. McKee, Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation, Nature medicine, vol. 9, pp. 796-800, 2003. [12]G. Falzon, S. Pearson, and R. Murison, Analysis of collagen fibre shape changes in breast cancer, Physics in medicine and biology, vol. 53, p. 6641, 2008. [13]J. F. Ribeiro, E. H. M. dos Anjos, M. L. S. Mello, and B. de Campos Vidal, Skin Collagen Fiber Molecular Order: A Pattern of Distributional Fiber Orientation as Assessed by Optical Anisotropy and Image Analysis, PloS one, vol. 8, p. e54724, 2013. [14]W. Lo, W.-L. Chen, C.-M. Hsueh, A. A. Ghazaryan, S.-J. Chen, D. H.-K. Ma, et al., Fast Fourier Transform–Based Analysis of Second-Harmonic Generation Image in Keratoconic Cornea, Investigative ophthalmology & visual science, vol. 53, pp. 3501-3507, 2012. [15]R. Cicchi, C. Matthäus, T. Meyer, A. Lattermann, B. Dietzek, B. R. Brehm, et al., Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non‐linear microscopy, Journal of biophotonics, vol. 7, pp. 135-143, 2014. [16]R. Cicchi, N. Vogler, D. Kapsokalyvas, B. Dietzek, J. Popp, and F. S. Pavone, From molecular structure to tissue architecture: collagen organization probed by SHG microscopy, Journal of biophotonics, vol. 6, pp. 129-142, 2013. [17]W. Hu, H. Li, C. Wang, S. Gou, and L. Fu, Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method, Journal of Biomedical Optics, vol. 17, pp. 0260071-0260079, 2012. [18]J. S. Bredfeldt, Y. Liu, C. A. Pehlke, M. W. Conklin, J. M. Szulczewski, D. R. Inman, et al., Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer, Journal of Biomedical Optics, vol. 19, pp. 016007-016007, 2014. [19]T. Igarashi, K. Nishino, and S. K. Nayar, The appearance of human skin, Technical Report: CUCS-024-05, 2005. [20]M.-R. Tsai, C.-H. Chen, and C.-K. Sun, Third and second harmonic generation imaging of human articular cartilage, Proceeding of SPIE, San Iose, CA, vol. 7183, pp. 71831V-1, 2009. [21]R.C. Gonzalez and R.E. Woods, Digital Image Processing: Prentice-Hall, Englewood Cliffs, NJ, 2002. [22]A. Zoumi, A. Yeh, and B. J. Tromberg, Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proceedings of the National Academy of Sciences, vol. 99, pp. 11014-11019, 2002. [23]N. Otsu, A threshold selection method from gray-level histograms, Automatica, vol. 11, pp. 23-27, 1975. [24]R. Adams and L. Bischof, Seeded region growing, Pattern Analysis and Machine Intelligence, IEEE Transactions, vol. 16, pp. 641-647, 1994. [25]R. Maini and H. Aggarwal, Study and comparison of various image edge detection techniques, International Journal of Image Processing (IJIP), vol. 3, pp. 1-11, 2009. [26]J. Shi and J. Malik, Normalized cuts and image segmentation, Pattern Analysis and Machine Intelligence, IEEE Transactions, vol. 22, pp. 888-905, 2000. [27]P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation, International Journal of Computer Vision, vol. 59, pp. 167-181, 2004. [28]J. A. Hartigan and M. A. Wong, Algorithm AS 136: A k-means clustering algorithm, Applied statistics, pp. 100-108, 1979. [29]C. Cortes and V. Vapnik, Support-vector networks, Machine learning, vol. 20, pp. 273-297, 1995. [30]C.-W. Hsu, C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification, 2003. [31]T. Kohonen, An introduction to neural computing, Neural networks, vol. 1, pp. 3-16, 1988. [32]N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian network classifiers, Machine learning, vol. 29, pp. 131-163, 1997. [33]M. Adel, M. Rasigni, T. Gaidon, C. Fossati, and S. Bourennane, Statistical-based linear vessel structure detection in medical images, Image Processing (ICIP) 16th IEEE International Conference, pp. 649-652, 2009. [34]Y. Tamada, S. Imoto, and S. Miyano, Parallel algorithm for learning optimal bayesian network structure, Journal of Machine Learning Research, vol. 12, pp. 2437-2459, 2011. [35]A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and systems: Prentice Hall, 1997. [36]S. Theodoridis and K. Koutroumbas, Pattern Pecognition: Academic Press, 2003. [37]S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674 - 693, 1989. [38]D. Gabor. “Theory of communications, Journal of International Electrical Engineers, vol. 93, part III, No. 26, pp. 427 - 457, 1946. [39]Q. Li, J. You, L. Zhang, and P. Bhattacharya, A multiscale approach to retinal vessel segmentation using Gabor filters and scale multiplication, Systems, Man and Cybernetics, pp. 3521-3527, 2006. [40]J. V. Soares, J. J. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification, Medical Imaging, IEEE Transactions, vol. 25, pp. 1214-1222, 2006. [41]J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, JOSA A, vol. 2, pp. 1160-1169, 1985. [42]A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, Multiscale vessel enhancement filtering, Medical Image Computing and Computer-Assisted Interventation—MICCAI’98, ed: Springer, pp. 130-137, 1998. [43]S. You, E. Bas, D. Erdogmus, and J. Kalpathy-Cramer, Principal Curved Based Retinal Vessel Segmentation towards Diagnosis of Retinal Diseases, Healthcare Informatics, Imaging and Systems Biology (HISB), 2011 First IEEE International Conference, pp. 331-337, 2011. [44]T. Lindeberg, Scale-space theory in computer vision: Springer, 1993. [45]Z. Hongqing, S. Huazhong, and L. Limin, Blood vessels segmentation in retina via wavelet transforms using steerable filters, Computer-Based Medical Systems, 2004. CBMS 2004. Proceedings. 17th IEEE Symposium, pp. 316-321, 2004. [46]C.-C. Chen, J. S. DaPonte, and M. D. Fox, Fractal feature analysis and classification in medical imaging, Medical Imaging, IEEE Transactions on, vol. 8, pp. 133-142, 1989. [47]J. S. Lim, Two-dimensional signal and image processing: Prentice-Hall, Englewood Cliffs, NJ, 1990. [48]E. D. Pisano, S. Zong, B. M. Hemminger, M. DeLuca, R. E. Johnston, K. Muller, et al., Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms, Journal of Digital Imaging, vol. 11, pp. 193-200, 1998. [49]C. E. Shannon, A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review, vol. 5, pp. 3-55, 2001. [50]S. M. Kay, Fundamentals of statistical signal processing: estimation theory: Prentice-Hall, 1993. [51]Javier R. Movellan: “Tutorial on Gabor Filters, Tutorial paper [Online] http://mplab.ucsd.edu/tutorials/pdfs/gabor.pdf. [52]A. M. MacEachren, “Compactness of geographic shape: Comparison and evaluation of measures, Geografiska Annaler. Series B. Human Geography, pp. 53 - 67, 1985. [53]S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, et al., Detection and Discrimination of Non-Melanoma Skin Cancer by Multimodal Imaging, in Healthcare, 2013, pp. 64-83. [54]M. Unser, Texture classification and segmentation using wavelet frames, Image Processing, IEEE Transactions, vol. 4, pp. 1549-1560, 1995. [55]T. Kasparis, D. Charalampidis, M. Georgiopoulos, and J. Rolland, Segmentation of textured images based on fractals and image filtering, Pattern Recognition, vol. 34, pp. 1963-1973, 2001.
|