(3.238.186.43) 您好!臺灣時間:2021/02/26 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:龔婉菱
研究生(外文):Wan-LingGong
論文名稱:硝酸銀置換銅離子之動力學研究
論文名稱(外文):A Kinetic Study of Silver Nitrate and Copper Ion by Replacement Reaction
指導教授:李文熙
指導教授(外文):Wen-Hsi Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:42
中文關鍵詞:銀顆粒置換反應聚乙烯吡咯烷酮
外文關鍵詞:Silver particleReplacement ReactionPolyvinylpyrrolidone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討利用伽凡尼置換反應製備銀銅顆粒之動力學研究,藉由奈米銀做為金屬銅粉接觸的黏著劑,以降低銅金屬接觸電阻。在低溫200℃燒結,可在金屬銅氧化前熔融奈米銀,以防止銅之氧化,另一方面導電率即可大幅增加。對於提升銅膏的導電率以及降低燒結溫度會有極大的幫助。
利用置換反應製備奈米銀粉包覆銅粒子,觀察製備之銀-銅粉末隨時間、溫度及多種因素對粒徑大小之影響,進而分析置換反應對銀-銅粉末之動力學現象。藉著改變硝酸銀含量、添加之分散劑含量、置換反應時間、置換反應溫度,觀察對銀顆粒結構的影響。結果發現,硝酸銀與銅粉莫耳數比為1:0.5時,銀顆粒還原速率獲得控制,形成分支明顯且完整的結構;本實驗使用兩種溶劑,包括去離子水以及乙二醇,由於有機溶劑乙二醇之極性致使置換反應速度趨於平緩,另添加0.5 wt.%之分散劑 (聚乙烯吡咯烷酮),有較好的分散較果,在此分散效果下,銅粒子被奈米銀完整包覆;反應最佳時間30分鐘,銀顆粒有足夠反應時間被還原出來,並且形成分支明顯的奈米銀結構;而在溫度控制方面,低溫致使反應過慢,無法完整生長出包覆完全之奈米銀粒子。另外由表面成分分析結果可知,銀-銅製換反應過後,表面之銀比例約為95%以上,形成完整的奈米銀結構包覆銅粒子。
This study is probing into the kinetic influence in silver-copper replacement reaction. In order to reduce the contact resistance, copper powder contact each other with the binder, silver nanoparticles. Silver nanoparticles will melt at 200℃ before copper powder is oxidized. This mechanism can not only prevent copper from oxidized, but enhance the conductivity.
Silver-copper powder is prepared by replacement reaction. Through changing the content of silver nitrate, the content of dispersant (PVP), reaction time and reaction temperature, the result shows replacement reaction has an impact on the grain size. Moreover, the kinetic study can be analyzed. The conclusion of this study represents when the molar ratio of silver nitrate to copper powder is 1:0.5, using ethylene glycol as solvent, adding 0.5 wt. % PVP, at room temperature, the reduction rate of silver particles could be controlled, and forming nanostructure silver which has obvious branch structure. The dendritic structure silver formed smaller and obvious branch structure. When reaction time is 30 minutes, there is enough time to produce silver nanoparticles, obvious dendritic structure. In the other side, if the temperature of reaction is too low, copper powder can’t be coated completely. A weight percent of silver is more than 95% on the surface by energy dispersive spectrometer analysis. This result shows silver nanostructure covered on copper in a good shape.
Contents

摘要 I
Abstract II
誌謝 III
Contents IV
Table Captions VI
Figure Captions VII
Chapter1 Introduction 1
1-1 Preface 1
1-2 Motivation 3
1-3 Chapter Overview 3
Chapter2 Literature Review 4
2-1 Replacement Reaction 4
2-1-1Silver Structures 7
2-1-2 Development of replacement reaction of Ag-Cu 8
2-2 Polyvinylpyrrolidone, PVP 13
Chapter3 Experimental Scheme 17
3-1 Experimental Procedure 17
3-1-1 Pretreatment of Cu powder 18
3-1-2 Preparation of Silver Nitrate Solution 19
3-1-3 Ag-Cu Replacement Reaction 19
Chapter4 Results and Discussion 20
4-1 Structure of Cu powder 20
4-2 Effects of different molar ratio of AgNO3 to Cu 21
4-3 Effects of solvent and concentration of AgNO3 solution 25
4-3-1 Different solvent of AgNO3 solution 25
4-3-2 Different concentration of AgNO3 solution 26
4-4 Effects of adding Dispersant (PVP) 27
4-5 Effects of Different copper grain size 30
4-6 Effects of Replacement Reaction Time and Temperature 31
4-6-1 Effects of Replacement Reaction Time 31
4-6-2 Effects of Replacement Reaction Temperature 33
4-7 Kinetic Analysis 34
4-7-1 Effects of different temperature 34
4-7-2 Different concentration of silver nitrate 36
4-7-3 Effects of different grain size 38
Chapter5 Conclusions 39
Reference 40
Reference
[1] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105 (2005) 1025.
[2] ] M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, M. Takata, J. Am. Chem. Soc. 133 (2011) 1150.
[3] Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15 (2003) 641.
[4] A.P. O'Mullane, S.J. Ippolito, A.M. Bond, S.K. Bhargava, Electrochem. Commun. 12 (2010) 611.
[5] J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.Y. Li, Y. Xia, Nano Lett. 5 (2005) 2058.
[6] J.-B. Raoof, R. Ojani, A. Kiani, S. Rashid-Nadimi, Int. J. Hydrogen Energy 35 (2010)452.
[7] Y. Li, Y.-Y. Song, C. Yang, X.-H. Xia, Electrochem. Commun. 9 (2007) 981
[8] Andreas Ott, Suresh K. Bhargava , Anthony P. O'Mullane, “A study of the galvanic replacement reaction at surfaces and the role of lateral charge propagation, Surface Science Letters, 606 (2012) L5–L9
[9]P.VanýsekVanýsek “Electrochemical Series in “Handbook of Handbook of Chemistry and Physics, 92nd edition, CRC , 2011
[10]David R. Lidem “Handbook of Chemistry and Physics, 87th edition,CRC,2006
[11]William M. Haynes, “Handbook of Chemistry and Physics, 93rd edition,CRC,2012
[12]Allen J. Bard, Roger Parsons, Joseph Jordan, “Standard Potentials in Aqueous Solution, Marcel Dekker, 1985
[13]P. Atkins, “Physical Chemistry, 6th edition, W.H. Freeman and Company, 1997
[14] Chia-Yun Chena and Ching-Ping Wong, “Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates, Nanoscale, 2014, 6, 811–816
[15]J.X. Fang H.J. You, K. Peng, Y. Yan, X.P. Song, B.J. Ding, “Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction, Crystal Growth & Design vol:7, 2007, p.864-867
[16] Y.W. Hu, S. Liu, S. Huang W. Pan, “Superhyfrophobicity and surface enhanced Raman scattering activity of dendritic silver layers’, Thin Solid Films vol:519, 2010.
[17] W. Zhanga, F. Tana, W. Wanga, X. Qiub, X. Qiaoa, J. Chena, Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol, Journal of Hazardous Materials Vol: 217–218, 2012, Pages 36–42
[18]J. Zhao, D.M. Zhang, X.J. Song, “Simple and eco-friendly preparation of silver films coated on copper surface by replacement reaction, Applied Surface Science vol:258, 2012
[19] Y.Yan, S.Z.Kang, J.Mu, “Preparation of high quality Ag film from Ag nanoparticles, Applied Surface Science vol:253,2007,p.p.4677-4679
[20] J. Widoniak, S. Eiden-Assmann, G. Maret, “Silver particles tailoring of shapes and sizes, Colloids and Surfaces A: Physicochem. Eng. Aspects vol:270-271, 2005, p.p.340-344
[21] Z.T.Zhang, B.Zhao, L.M.Hu, “PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes, Journal of Solid State Chemistry vol:121,1996,p.p.105-110
[22]I.Washio, Y.J.Xiong, Y.D.Yin, Y.N.Xia, “Reduction by the End Groups of Poly(vinyl pyrrolidone): A New Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates, Advanced Materials vol:18,2006,p.p.1745-1749
[23] B. Wiley, Y.G. Sun, V. Mayers, Y.N. Xia, “Shape-Controlled Synthesis of Metal Nanostructures-The Case of Silver, Chemistry vol:11, 2005, p.p. 454-463
[24] T.A. Witten Jr., L.M. Sander, “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Physical Review Letters vol:47, 1981, p.p. 1400-1403
[25] E. Filippo, A. Serra, D. Manno, “Self-assembly and branching of sucrose stabilized silver nanoparticles by microwave assisted synthesis: From nanoparticles to branched nanowires structures, Colloids and Surfaces A: Physicochemical and Engineering Aspects vol:348, 2009, p.p. 205-211
[26] G.D. Wei, C.W. Nan, Y. Deng, Y.H. Lin, “Self-organized Synthesis of Silver Chainlike and Dendritic Nanostructures via a Solvothermal Method, Chemistry of Materials vol:15, 2003, p.p.4436-4441
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔