|
[1] G. Q. Zhang and A. van Roosmalen, More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer, 2009. [2] S. J. Sherman, W. K. Tsang, T. A. Core, R. S. Payne, D. E. Quinn, K. H. L. Chau, J. A. Farash, and S. K. Baum, “A low cost monolithic accelerometer, in Proc. SPIE, Dec. 1992, pp. 501–504. [3] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, in Proc. IEDM, Dec. 1995, pp. 609–612. [4] A. A. Seshia, M. Palaniapan, T. A. Roessig, R. T. Howe, R. W. Gooch, T. R. Schimert, and S. Montague, “A vacuum packaged surface micromachined resonant accelerometer, J. Microelectromech. Syst., vol. 11, no. 6, pp. 784–793, Dec. 2002. [5] J. Yasaitis, M. Judy, T. Brosnihan, P. Garone, N. Pokrovskiy, D. Sniderman, S. Limb, R. Howe, B. Boser, M. Palaniapan, X. Jiang, and S. Bhave, “A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS, in Proc. SPIE, Jan. 2003, pp. 145–154. [6] S. A. Bhave, J. I. Seeger, X. Jiang, B. E. Boser, R. T. Howe, and J. Yasaitis, “An integrated, vertical-drive, in-plane-sense microgyroscope, in IEEE Conf. Transducers, Jun. 2003, pp. 171–174. [7] M. W. Jude, “Evolution of integrated inertial MEMS technology, in Proc. Solid-State Sensor, Actuator and Microsystem Workshop, Jun. 2004, pp. 27–32. [8] M. Offenberg, F. Larmer, B. Elsner, H. Munzel, and W. Riethmuller, “Novel process for a monolithic integrated accelerometer, in Proc. Int. Conf. Solid-State Sensors and Actuators, Jun. 1995, pp. 589–592. [9] J. M. Bustillo, G. K. Fedder, C. T. C. Nguyen, and R. T. Howe, Microsystem Technologies. New York: Springer, 1994. [10] S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers, IEEE Trans. Electron Devices, vol. 22, pp. 377–385, Feb. 2001. [11] F. Y. Xiao, Y. Z. Juang, and C. F. Chiu, “CMOS-MEMS process, Patent US 7435612B2, Jun. 13, 2008. [12] S. H. Tseng, Y. J. Hung, Y. Z. Juang, and M. S. C. Lu, “A 5.8-GHz VCO with CMOS-compatible MEMS inductors, Sensor. and Actuat. A: Physical, vol. 139, pp. 187–193, Sep. 2007. [13] S. H. Tseng, C. L. Fang, P. C. Wu, Y. Z. Juang, and M. S. C. Lu, “A CMOS MEMS thermal sensor with high frequency output, in Proc. IEEE Int. Conf. Sensors, Oct. 2008, pp. 387–390. [14] S. H. Tseng, M. S. C. Lu, Y. J. Hung, and Y. Z. Juang, “High-Q CMOS MEMS resonator oscillator fabricated in a MPW batch process, in Proc. Eurosensors XXIV, Sep. 2010, pp. 1360–1363. [15] H. C. Li, S. H. Tseng, and M. S. C. Lu, “Study of CMOS micromachined selfoscillating loop utilizing a phase-locked loop driving circuit, J. Micromech. Microeng., vol. 22, Apr. 2012. [16] S. H. Tseng, M. S. C. Lu, P. C. Wu, Y. C. Teng, H. H. Tsai, and Y. Z. Juang, “Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 μm CMOS MEMS process, J. Micromech. Microeng., vol. 22, Apr. 2012. [17] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits. New York: McGraw-Hill, 2001. [18] K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, and F. Larmer, “A surface micromachined silicon gyroscope using a thick polysilicon layer, in Proc. IEEE Int. Conf. Micro Electro Mech. Syst., Jan. 1999, pp. 57–60. [19] M. Lemkin and B. E. Boser, “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics, IEEE J. Solid-State Circuits, vol. 34, pp. 456–468, Apr. 1999. [20] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer, IEEE J. Microelectromech. Syst., vol. 11, pp. 188–195, Jun. 2002. [21] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/rtHz monolithic CMOS MEMS accelerometer, IEEE J. Solid-State Circuits, vol. 39, pp. 722–730, May 2004. [22] H. Qu, D. Fang, and H. Xie, “A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier, IEEE Sensors J., vol. 8, pp. 1511–1518, Sep. 2008. [23] A. Sadat, H. Qu, C. Yu, J. S. Yuan, and H. Xie, “Low-power CMOS wireless MEMS motion sensor for physiological activity monitoring, IEEE Trans. Circuits Syst. I, vol. 52, pp. 2539–2551, Dec. 2005. [24] Y. C. Liu, M. H. Tsai, T. L. Tang, and W. Fang, “Improvement of CMOS-MEMS accelerometer using post-CMOS selective electroplating technique, in Proc. Int. Conf. Solid-State Sensor, Jun. 2011, pp. 1002–1005. [25] R. F. Colton, “Piezoresistive accelerometer, Patent US 4 430 895, Feb. 14, 1984. [26] L. M. Roylance and J. A. Angell, “A batch-fabricated silicon accelerometer, IEEE Trans. Electron Devices, vol. 26, pp. 1911–1917, Dec. 1979. [27] A. M. Leung, J. Jones, E. Czyzewska, J. Chen, and B. Woods, “Micromachined accelerometer based on convection heat transfer, in Proc. IEEE MEMS, Jan. 1998, pp. 627–630. [28] W. Fang and J. A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams, J. Micromech. Microeng., vol. 5, pp. 276–281, 1995. [29] V. P. Petkov and B. E. Boser, “A fourth-order ΣΔ interface for micromachined inertial sensors, IEEE J. Solid-State Circuits, vol. 40, pp. 1602–1609, Aug. 2005. [30] B. V. Amini and F. Ayazi, “A 2.5-V 14-bit CMOS SOI capacitive accelerometer, IEEE J. Solid-State Circuits, vol. 39, pp. 2467–2476, Dec. 2004. [31] L. He, Y. P. Xu, and M. Palaniapan, “A CMOS readout circuit for SOI resonant accelerometer with 4-μg bias stability and 20-μg/rtHz resolution, IEEE J. Solid-State Circuits, vol. 43, pp. 1480–1490, Jun. 2008. [32] C. T. Ko, S. H. Tseng, and M. S. C. Lu, “A CMOS micromachined capacitive tactile sensor with high frequency output, IEEE J. Microelectromech. Syst., vol. 15, Dec. 2006. [33] T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors, IEEE Trans. Electron Devices, vol. 40, pp. 903–909, May 1993. [34] B. E. Boser and R. T. Howe, “Surface micromachined accelerometers, IEEE J. Solid-State Circuits, vol. 31, pp. 366–375, Mar. 1996. [35] Y. Nemirovsky, I. Brouk, and C. Jakobson, “1/f noise in CMOS transistors for analog applications, IEEE Trans. Electron Devices, vol. 48, pp. 921–927, May 2001. [36] M. Paavola, M. Kämäräinen, J. A. M. Järvinen, M. Saukoski, M. Laiho, and K. A. I. Halonen, “A micropower interface ASIC for a capacitive 3-axis microaccelerometer, IEEE J. Solid-State Circuits, vol. 42, pp. 2651–2665, Dec. 2007. [37] M. Schipani, P. Bruschi, G. C. Tripoli, and T. Ungaretti, “A low power CMOS interface circuit for three-axis integrated accelerometers, in Proc. Res. Microelectron. Electron. Conf., Jul. 2007, pp. 117–120. [38] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New Jersey: Wiley, 1997. [39] C. M. Sun, M. H. Tsai, Y. C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique, IEEE Trans. Electron Devices, vol. 57, pp. 921–927, Jul. 2010. [40] ADXL337 Data Sheet, Analog Device Inc, CA, United States. [41] MMA6361L Data Sheet, Freescale Semiconductor Inc, Texas, United States. [42] E. A. Vittoz, “Future of analog in the VLSI environment, in Proc. ISCAS, May 1990, pp. 1372–1375. [43] P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits, IEEE J. Solid-State Circuits, vol. 40, pp. 1212–1224, Jun. 2002. [44] K. Bult, “Analog design in deep sub-micron CMOS, in Proc. ESSCIRC, Sep. 2000, pp. 126–132. [45] Q. Huang, “Low voltage and low power aspects of data converter design, in Proc. ESSCIRC, Sep. 2004, pp. 29–35. [46] A. P. Chandrakasan, D. C. Daly, J. Kwong, and Y. K. Ramadass, “Next generation micro-power systems, in Proc. IEEE Symp. VLSI Circuits, Jun. 2008, pp. 2–5. [47] K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “CMOS smart sensor for monitoring the quality of perishables, IEEE J. Solid-State Circuits, vol. 42, pp. 798–803, Apr. 2007. [48] T. Kleeburg, J. Loo, N. J. Guilar, E. Fong, and R. Amirtharajah, “Ultra-lowvoltage circuits for sensor applications powered by free-space optics, in ISSCC Dig. Tech. Papers, Feb. 2009. [49] M. J. Chen, J. S. Ho, T. H. Huang, C. H. Yang, Y. N. Jou, and T. Wu, “Backgate forward bias method for low-voltage CMOS digital circuits, IEEE Trans. Electron Devices, vol. 43, pp. 904–910, Jun. 1996. [50] B. J. Blalock, P. E. Allen, and G. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology, IEEE Trans. Circuits Syst. II, vol. 45, pp. 769–780, Jul. 1998. [51] T. Lehmann and M. Cassia, “1-V power supply CMOS cascode amplifier, IEEE J. Solid-State Circuits, vol. 36, pp. 1082–1086, Jul. 2001. [52] T. Stockstad and H. Yoshizawa, “A 0.9-V 0.5-μA rail-to-rail CMOS operational amplifier, IEEE J. Solid-State Circuits, vol. 37, pp. 286–292, Mar. 2002. [53] S. Chatterjee, Y. Tsividis, and P. Kinget, “0.5-V analog circuit techniques and their application in OTA and filter design, IEEE J. Solid-State Circuits, vol. 40, pp. 2373–2387, Dec. 2005. [54] T. Kunikiyo, K. Mitsui, M. Fujinaga, T. Uchida, and N. Kotani, “Reverse shortchannel effect due to lateral diffusion of point-defect induced by source/drain ion implantation, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, pp. 507–514, Apr. 1994. [55] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme (SATS) for low-voltage high-speed operation, in Proc. CICC, May 1994, pp. 271–274. [56] V. R. von Kaenel, M. D. Pardoen, E. Dijkstra, and E. A. Vittoz, “Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits, in IEEE Symp. Low Power Electron. Dig. Tech. Papers, Oct. 1994, pp. 78–79. [57] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A. Antoniadis, A. P. Chandrakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage, IEEE J. Solid-State Circuits, vol. 37, pp. 1396–1402, Nov. 2002. [58] J. T. Kao, M. Miyazaki, and A. P. Chandrakasan, “A 175-mV multiply-accumulate unit using an adaptive supply voltage and body bias architecture, IEEE J. Solid-State Circuits, vol. 37, pp. 1545–1554, Nov. 2002. [59] S. Narendra, J. Tschanz, J. Hofsheier, B. Bloechel, S. Vangal, Y. Hoskote, S. Tang, D. Somasekhar, A. Keshavarzi, V. Erraguntla, G. Dermer, N. Borkar, S. Borkar, and V. De, “Ultra-low voltage circuits and processor in 180nm to 90nm technologies with a swapped-body biasing technique, in ISSCC Dig. Tech. Papers, Feb. 2004, pp. 156–157. [60] B. E. Boser and B. A. Wooley, “The design of sigma-delta Modulation analogto-digital converters, IEEE J. Solid-State Circuits, vol. 23, pp. 1298–1308, Dec. 1988. [61] G. Yin and W. Sansen, “A high-frequency and high-resolution fourth order ΣΔ A/D converter in BiCMOS technology, IEEE J. Solid-State Circuits, vol. 29, pp. 857–865, Aug. 1994. [62] A. Marques, V. Peluso, M. Steyaert, and W. Sansen, “Optimal parameters for cascade ΣΔ modulators, in Proc. ISCAS, Jun. 1997, pp. 61–64. [63] F. Medeiro, B. Pérez-Verdú, J. M. de la Rosa, and A. Rodríguez-Vázquez, “Fourthorder cascade ΣΔ modulators: a comparative study, IEEE Trans. Circuits Syst. I, vol. 45, pp. 1041–1051, Oct. 1998. [64] ADXL335 Data Sheet, Analog Device Inc, CA, United States. [65] LIS331EB Data Sheet, STMicroelectronics Inc, Geneva, Swiss. [66] A. Selvakumar, F. Ayazi, and K. Najafi, “A high-sensitivity z-axis capacitive silicon microaccelerometer with a torsional suspension, IEEE J. Microelectromech. Syst., vol. 7, pp. 192–200, Jun. 1998. [67] S. H. Tseng, P. C. Wu, H. H. Tsai, and Y. Z. Juang, “Monolithic z-axis CMOS MEMS accelerometer, Microelectronic Engineering, vol. 119, pp. 178–182, May 2014. [68] S. Timoshenko, Theory of Elasticity. New York: McGraw-Hill, 1970. [69] J. Markus, J. Silva, and G. C. Temes, “Theory and applications of incremental ΣΔ converters, IEEE Trans. Circuits Syst. I, vol. 51, pp. 678–690, Apr. 2004. [70] J. Robert and P. Deval, “A second-order high-resolution incremental A/D converter with Offset and charge injection compensation, IEEE J. Solid-State Circuits, vol. 23, pp. 736–741, Jun. 1988. [71] G. C. Temes, Y. Wang, W. Yu, and J. Markus, “Incremental data converters, in Proc. MTNS, Jul. 2010, pp. 715–721. [72] T. C. Caldwell and D. A. Johns, “Incremental data converters at low oversampling ratios, IEEE Trans. Circuits Syst. I, vol. 57, pp. 1525–1537, Jul. 2010. [73] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Markus, J. Silva, and G. Temes, “A low-power 22-bit incremental ADC, IEEE J. Solid-State Circuits, vol. 41, pp. 1562–1571, Jul. 2006.
|