|
[1]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure, IEEE J. Solid-State Circuits, vol. 45, pp. 731–740, Apr. 2010. [2]C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. K. Bu, and C. C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387. [3]C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18um CMOS, in Symp. VLSI Circuit Dig. Tech. Papers, June 2010, pp. 241–242. [4]J. Craninckx and G. V. D. Plas, “A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS, in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 246–247. [5]S. H. Cho, C. K. Lee, J. K. Kwon, and S. T. Ryu, “A 550-W 10-b 40-MS/s SAR ADC with multistep addition-only digital error correction, IEEE J. Solid-State Circuits, vol.46, pp. 1881–1892, Apr. 2010. [6]P. Harpe, C. Zhou, X. Wang, G. Dolmans, and H. D. Groot, “A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90nm CMOS, in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 388–389. [7]Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS, IEEE J. Solid-State Circuits, vol. 45, pp. 1111–1121, June 2010. [8]G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “1-uW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications, IEEE J. Solid-State Circuits, vol. 47, pp. 2783–2795, Nov. 2012. [9]G. Y. Huang, S. J. Chang, Y. Z. Lin, C. C. Liu, and C. P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS, in Proc. IEEE Asian Solid-State Circuits Conf. Nov. 2013, pp. 289–292. [10]J. Y. Lin and C. C. Hsieh, “A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, pp. 70-79, Jan. 2015. [11]M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers, IEEE J. Solid-State Circuits, vol. 38, pp. 475–482, Mar. 2003. [12]T. Burger and Q. Huang, “A 13.5-mW 185-Msample/s-ΔΣ modulator for UMTS/GSM dual-standard IF reception, IEEE J. Solid-State Circuits, vol. 36, pp. 1868–1878, Dec. 2001. [13]J. Koh, Y. Chio, and G. Gomez, “A 66 dB DR 1.2V 1.2mW single-amplifier double-sampling 2nd-order ΔΣ ADC for WCDMA in 90nm CMOS, in ISSCC Dig. Tech. Papers, Feb. 2005, pp. 170-171. [14]Y. Fujimoto, Y. Kanazawa, P. L. Re, and M. Miyamoto, “An 80/100MS/s 76.3/70.1dB SNDR ΔΣ ADC for digital TV receivers, in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 76-77. [15]L. Bos, G. Vandersteen, P. Rombouts, A. Geis, A. Morgado, Y. Rolain, G. V. Plas and J. Ryckaert, “Multirate cascaded discrete-time low-pass ΣΔ modulator for GSM/Bluetooth/UMTS, IEEE J. Solid-State Circuits, vol. 45, pp. 1198-1208, June 2010. [16]E. Bilhan and F. Maloberti, “A wideband sigma-delta modulator with cross-coupled two-paths, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 56, pp. 886-893, May 2009. [17]E. Bonizzoni, A. P. Perez, F. Maloberti, and M. G. Andrade, “Third-order ΣΔ modulator with 61-dB SNR and 6-MHz bandwidth consuming 6 mW, in Proc. Eur. Solid-State Circuits Conf., Sep. 2008, pp. 218–221. [18]N. Maghari and U. Moon, “A third-order delta-sigma modulator using noise-shaped bi-directional single-slope quantizer, IEEE J. Solid-State Circuits, vol. 46, pp. 2882–2891, Dec. 2011. [19]S. Zaliasl, S. Saxena, P. K. Hanumolu, K. Mayaram, and T. S. Fiez, “A 12.5-bit 4 MHz 13.8 mW MASH ΔΣ Modulator with multirated VCO-based ADC, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, pp. 1604-1613, Aug. 2012. [20]R. Zanbaghi, S. Saxena, G. C. Temes, and T. S. Fiez, “A 75-dB SNDR, 5-MHz bandwidth stage-shared 2–2 MASH ΔΣ modulator dissipating 16 mW Power, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, pp. 1614-1625, Aug. 2012. [21]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997, pp. 564-565. [22]K. Lee, G. C. Temes, and F. Maloberti, Noise-coupled multi-cell delta-sigma ADCs, in Proc. IEEE Int. Symp. Circuits and Syst., May 2007, pp. 249–252. [23]K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, and G. C. Temes, A noise-coupled time-interleaved delta-sigma ADC with 4.2 MHz bandwidth, 98 dB THD, and 79 dB SNDR, IEEE J. Solid-State Circuits, vol. 43, pp. 2601–2612, Dec. 2008. [24]K. Lee, M. R. Miller, and G. C. Temes, “An 8.1mW, 82dB delta-sigma ADC with 1.9MHz BW and 98dB THD, IEEE J. Solid-State Circuits, vol. 44, pp. 2202–2211, Aug. 2009. [25]H. San and H. Kobayashi, “Cross-noise-coupled architecture of complex bandpass ΔΣ AD modulator, IEICE Trans. Fundamentals, vol. E92-A, pp. 998–1003, Apr. 2009. [26]Y. Nishida, K. Hamashita, and G. C. Temes, “An enhanced dual-path ΔΣ A/D converter, IEICE Trans. on Electron., vol. E93-C, pp. 884–891, June 2010. [27]O. Rajaee, T. Musah, N. Maghari, S. Takeuchi, M. Anija, K. Hamashita, and U. K. Moon, “Design of a 79 dB 80 MHz 8X-OSR hybrid delta-sigma/pipelined ADC, IEEE J. Solid-State Circuits, vol. 45, pp. 719–730, Apr. 2010. [28]O. Rajaee, S. Takeuchi, M. Aniya, K. Hamashita, and U. Moon, “Low-OSR over-ranging hybrid ADC incorporating noise-shaped two-step quantizer, IEEE J. Solid-State Circuits, vol. 46, pp. 2458-2468, Nov. 2011. [29]A. P. Perez, E. Bonizzoni, and F. Maloberti, “A 88-dB DR, 84-dB SNDR very low-power single op-amp third-order modulator, IEEE J. Solid-State Circuits, vol. 47, pp. 2107–2118, Sep. 2012. [30]T. Oh, N. Maghari, and U. K. Moon, “A Second-Order ΔΣ ADC using noise-shaped two-step integrating quantizer, IEEE J. Solid-State Circuits, vol. 48, pp. 1465–1474, June 2013. [31]T. Kim, C. Han, and N. Maghari, “Noise-shaped residue-discharging delta-sigma ADCs with time-modulated pulse feedback, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, pp. 2796-2804, Oct. 2014. [32]K. T. Tiew and M. Je, “A 0.06-mm2 double-sampling single-OTA 2nd-order ΔΣ modulator in 0.18-m CMOS technology, in Proc. IEEE Asian Solid-State Circuits Conf. Nov. 2011, pp. 253–256. [33]I. J. Chao, C. L. Hsu, B. D. Liu, S. J. Chang, C. Y. Huang, and H. W. Ting, “A third-order low-distortion delta-sigma modulator with opamp sharing and relaxed feedback path timing, IEICE Trans. Electron., vol. E95-C, pp.1799–1809, Nov. 2012. [34]I. J. Chao, C. W. Hou, B. D. Liu, S. J. Chang, and C. Y. Huang, “A single opamp third-order low-distortion delta-sigma modulator with SAR quantizer embedded passive adder, IEICE Trans. Electron., vol. E97-C, pp. 526–537, June 2014. [35]M. Z. Straayer and M. H. Perrott, “A 12-bit, 10 MHz bandwidth, continuous-time ADC with a 5-bit, 950 MS/s VCO-based quantizer, IEEE J. Solid-State Circuits, vol. 43, pp. 805–814, Apr. 2008. [36]M. Park and M. H. Perrott, “A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time delta-sigma ADC with VCO-based integrator and quantizer implemented in CMOS, IEEE J. Solid-State Circuits, vol. 44, pp. 3344–3358, Dec. 2009. [37]G. Taylor and I. Galton, “A mostly-digital variable-rate continuoustime delta-sigma modulator ADC, IEEE J. Solid-State Circuits, vol.45, pp. 2634–2646, Dec. 2010. [38]T. K. Jang, J. Kim, Y. G. Yoon, and S. H. Cho, “A highly-digital VCO-based analog-to-digital converter using phase interpolator and digital calibration, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, pp. 1368–1372, Aug. 2012. [39]W. Yu, J. Kim, K. S. Kim, and S. H. Cho, “A time-domain high-order MASH delta sigma ADC using voltage-controlled gated-ring oscillator, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, pp. 856-866, Apr. 2013. [40]H. San, H. Konagaya, F. Xu, A. Motozawa, H. Kobayashi, K. Ando, H. Yoshida, C. Murayama, and K. Miyazawa, “Novel architecture of feedforward and second-order multibit ΔΣAD modulator, IEICE Trans. Fundamentals, vol. E91-A, pp. 965–970, Apr. 2008. [41]K. Lee and G. C. Temes, “Improved low-distortion ΣΔ ADC topology, in Proc. IEEE Int. Symp. Circuits and Syst., May 2009, pp. 1341–1344. [42]I. J. Chao, W. C. Chen, C. M. Kuo, B. D. Liu, H. W. Ting, S. J. Chang, and C. Y. Huang, “A low-distortion relaxed-DEM-timing delta-sigma modulator without extra adder in the quantizer Input, in Proc. 22nd VLSI Design/CAD Symp., Aug. 2011, pp. 480–483. [43]I. J. Chao, C. M. Kuo, B. D. Liu, C. Y. Huang, and S. J. Chang, “A 3rd-order delta-sigma modulator with timing-sharing opamp-sharing technique, in Proc. IEEE Int. Symp. Circuits and Syst., May 2013, pp. 2002–2005. [44]L. Liu, D. Li, Y. Y. L. Chen, and Z. Wang, “A 95dB SNDR audio ΔΣmodulator in 65nm CMOS, in Proc. IEEE Cust. Int. Circuits Conf., Sep. 2011, pp. 1–4. [45]Z. Chen, Y. Jiang, C. Cai, H. G. Wei, S. W. Sin, S. P. U, Z. Wang, and R. P. Martins, “A 22.4 W 80dB SNDR sigma-delta modulator with passive analog adder and SAR quantizer for EMG application, in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 1–4. [46]K. Yamamoto and A. C. Carusone, “A 1-1-1-1 MASH delta-sigma modulator with dynamic comparator-based OTAs, IEEE J. Solid-State Circuits, vol. 47, pp. 1866–1883, Aug. 2012. [47]A. F. Yeknami, F. Qazi, and A. Alvandpour, “Low-Power DTΔΣ modulators using SC passive filters in 65 nm CMOS, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, pp. 358-370, Feb. 2014. [48]A. Nilchi and D. A. Johns, “A low-power delta-sigma modulator using a charge-pump integrator, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, pp. 1310-1321, May 2013. [49]O. Rajaee and U. K. Moon, “Highly linear noise-shaped pipelined ADC utilizing a relaxed accuracy front-end, IEEE J. Solid-State Circuits, vol. 48, pp. 502–515, Feb. 2013. [50]J. A. Fredenburg and M. P. Flynn “A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC, IEEE J. Solid-State Circuits, vol. 47, pp. 2898–2904, Dec. 2012. [51]C. C. Lee, E. Alpman, S. Weaver, C. Y. Lu, and J. Rizk, “A 66dB SNDR 15MHz BW SAR assisted ΔΣ ADC in 22nm tri-gate CMOS, in Symp. VLSI Circuit Dig. Tech. Papers, June 2013, pp. C64–C65. [52]A. Gharbiya and D. A. Johns, “A 12-bit 3.125 MHz bandwidth 0–3 MASH delta-sigma modulator, IEEE J. Solid-State Circuits, vol. 44, pp. 2010–2018, July 2009. [53]R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005. [54]J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “Wideband low-distortion ΔΣ ADC topology, Electron. Lett., vol. 37, pp. 737-738, June 2001. [55]R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, Design-oriented estimation of thermal noise in switched-capacitor circuits, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 52, pp. 2358-2368, Nov. 2005. [56]F. Maloberti, Data Converters. Dordrecht, Netherlands: Springer, 2007. [57]H. Z. Hoseini, O. Shoaei, and I. Kale, “A new structure for capacitor-mismatch-insensitive multiply-by-two amplification, in Proc. IEEE Int. Symp. Circuits and Syst., May 2006, pp. 4879–4882. [58]P. Y. Wu, V. S. L. Cheung, and H. C. Luong, “A 1-V 100-MS/s 8-bit CMOS switched-opamp pipelined ADC using loading-free architecture, IEEE J. Solid-State Circuits, vol. 42, pp.730–738, Apr. 2007. [59]J. F. Lin, S. J. Chang, C. F. Chiu, H. H. Tsai and J. J. Wang, Low-power and wide-bandwidth cyclic ADC with capacitor and opamp reuse techniques for CMOS image sensor application, IEEE Sensors Journal, vol. 9, pp.2044–2054, Dec. 2009. [60]R. T. Baird and T. S. Fiez, “Linearity enhancement of multibit ΔΣ A/D and D/A converters using data weighted averaging, IEEE Trans. Circuit Syst. II, vol. 42, pp. 753–762, Dec. 1995. [61]S. M. Yoo, J. B. Park, S. H. Lee, and U. K. Moon, A 2.5-V 10-b 120-MSample/s CMOS pipelined ADC based on merged-capacitor switching, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 51, pp. 269–275, May 2004. [62]S. M. Yoo, T. H. Oh, J. W. Moon, S. H. Lee, and U. K. Moon, A 2.5-V 10-b 120 -MSample/s CMOS pipelined ADC with high SFDR, in Proc. IEEE Cus. Int. Circuits Conf., Aug. 2002, pp. 441–444. [63]G. Y. Huang, “Easily-integrated and energy-efficient design techniques for successive-approximation analog-to-digital converters, Ph.D. dissertation, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R. O. C., 2012. [64]Y. C. Huang and T. C. Lee, “A 10-bit 100-MS/s 4.5-mW pipelined ADC with a time-sharing technique, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, pp. 1157–1166, June 2011. [65]W. Shen and G. C. Temes, “Double-sampled ΔΣ modulator relaxed feedback timing, in Proc. IEEE Int. Midwest Symp. Circuits and Syst., Aug. 2009, pp. 393–396. [66]Y. Z. Lin, S. J. Chang, Y. T. Liu, C. C. Liu, and G. Y Huang, “An asynchronous binary-search ADC architecture with a reduced comparator count, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, pp.1829–1837, Aug. 2010. [67]B. H. Leung and S. Sutarja, Multibit sigma-delta A/D converter incorporating a novel class of dynamic element matching techniques, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 39, pp. 35–51, Jan. 1992. [68]L. R. Carley, A noise-shaping coder topology for 15+ bit converters, IEEE J. Solid-State Circuits, vol. 24, pp. 267–273, Apr. 1989. [69]S. T. Ryu, B. S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with opamp current reuse, IEEE J. Solid-State Circuits, vol. 42, pp. 475-485, Mar. 2007. [70]C. H. Kuo, T. H. Kuo, and K. L. Wen, “Bias-and-input interchanging technique for cyclic/pipelined ADCs with opamp sharing, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 57, pp. 168-172, Mar. 2010. [71]M. Y. Kim, J. Kim, T. Lee, and C. Kim, “10-bit 100-MS/s pipelined ADC using input-swapped opamp sharing and self-calibrated V/I converter, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, pp. 1438-1447, Aug. 2011. [72]K. Chandrashekar and B. Bakkaloglu, “A 10 b 50 MS/s opamp-sharing pipeline A/D with current-reuse OTAs, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, pp. 1610-1617, Sep. 2011. [73]K. H. Lee, K. S. Kim, and S. H. Lee, “A 12b 50 MS/s 21.6 mW 0.18 m CMOS ADC maximally sharing capacitors and op-amps, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, pp. 2127-2136, Sep. 2011. [74]B. W. Koo, S. J. Park, G. C. Ahn, and S. H. Lee, “A single amplifier-based 12-bit 100MS/s 1V 19mW 0.13m CMOS ADC with various power and area minimized circuit techniques, IEICE Trans. Electron., vol. E94-C, pp. 1282-1288, Aug. 2011. [75]H. J. Kim, T. J. An, S. M. Myung, and S. H. Lee, “Time-interleaved and circuit-shared dual-channel 10 b 200 MS/s 0.18 um CMOS analog-to-digital convertor, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, pp. 2206-2213, Dec. 2013. [76]Z. Wang, M. Wang, W. Gu, C. Chen, F. Ye, and J. Ren, “A high-linearity pipelined ADC with opamp split-sharing in a combined front-end of S/H and MDAC1, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, pp. 2834-2844, Nov. 2013. [77]C. S. Shin and G. C. Ahn, “A 10-bit 100-MS/s Dual-Channel Pipelined ADC Using Dynamic Memory Effect Cancellation Technique, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, pp. 274-278, May 2011. [78]K. Haug, G. C. Temes, and K. Martin, “Improved offset-compensation schemes for SC circuits, in Proc. Int. Symp. Circuits and Syst., May 1984, pp. 1054-1057. [79]K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-capacitor circuits with reduced sensitivity to amplifier gain, IEEE Trans. Circuits Syst., vol. CAS-34, pp. 571-574, Apr. 1987. [80]H. Yoshizawa and G. C. Temes, “Switched-capacitor track-and-hold amplifiers with low sensitivity op-amp imperfections, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 54, pp. 193-199, Jan. 2007. [81]J. Li and U. K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique, IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sep. 2004. [82]Y. J. Kook, J. Li, B. Lee, and U. K. Moon, “Low-power and high-speed pipelined ADC using time-aligned CDS technique, in Proc. IEEE Cus. Int. Circuits Conf., Sep. 2007, pp. 321-324. [83]J. F. Lin, S. J. Chang, C. C. Liu, and C. H. Huang, “A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 57, pp. 163-167, Mar. 2010. [84]B. Razavi, Design of Analog CMOS Integrated Circuits. Boston. MA: McGraw-Hill, 2001, pp. 60-67. [85]D. Garrity and P. Rakers, “Common-mode output sensing circuit, U.S. Patent 5 894 284, Apr. 13, 1999. [86]O. Choksi and L. R. Carley, “Analysis of switched-capacitor common-mode feedback circuit, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 50, pp. 906-917, Dec. 2003. [87]M. A. N. Haroun and A. A. Hamoui, “Design and verification of a switchable opamp for switched-capacitor integrators, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 61, pp. 738-742, Oct. 2014. [88]J. K. Woo, H. Lee, H. C. Kim, D. K. Jeong, and S. Kim, “1.2 V 10-bit 75 MS/s pipelined ADC with phase-dependent gain-transition CDS, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, pp. 585-592, Mar. 2014. [89]O. A. Hafiz, X. Wang, P. J. Hurst, and S. H. Lewis, “Immediate calibration of operational amplifier gain error in pipelined ADCs using extended correlated double sampling, IEEE J. Solid-State Circuits, vol. 48, pp.749–759, Mar. 2013.
|