跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙宜任
研究生(外文):I-JenChao
論文名稱:提昇三角積分調變器功耗效率及切換電容電路效能之設計技術
論文名稱(外文):Design Techniques for Enhancing Power Efficiency of Delta-Sigma Modulators and Performance of Switched-Capacitor Circuits
指導教授:劉濱達張順志
指導教授(外文):Bin-Da LiuSoon-Jyh Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:181
中文關鍵詞:低失真三角積分調變器三角積分調變器運算放大器共用技術資料加權平均演算法記憶效應具相關性雙重取樣技術
外文關鍵詞:Low-distortion delta-sigma modulatorDSMopamp-sharing techniquedata weighted averaging algorithmmemory effectcorrelated double sampling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究能使三角積分調變器朝向寬頻發展的低功率技術,另外亦提出兩種放大器的技術來分別改善由運算放大器共享技術引起的記憶效應,與節省在離散切換電容電路操作時不必要的放大器功耗。

在三角積分調變器的部分,架構與電路上皆提出了新的技術以達到低功耗的目的。所提出的三個三階的三角積分器架構可以最小化所需使用到的運算放大器數目並最大化運算放大器功率的使用率。這些架構延長了關鍵的回授路徑時間變為半個時脈週期,使得其它低速但是高功耗效率的類比數位轉換器架構可以被採用做為量化器,不再侷限於只能使用快閃式架構。為了處理回授的數位類比轉換器元件之間的不匹配問題,本論文提出ㄧ個簡化的資料加權平均演算法來減輕其非線性現象,且與傳統資料加權平均演算法相比,其硬體實現亦較為簡單。第一個設計例子使用ㄧ個雙重積分器架構做為第二級積分器,用以提升前兩級積分器電路採用運算放大器共享技術的效力。而量化器採用無負載技術的四位元的循環式類比數位轉換器,並且與主動加法器共享同一運算放大器。對照於需要四個運算放大器的傳統三角積分調變器,所提出之架構包含主動加法器與量化器時,只使用了兩個運算放大器。第二個設計例子簡化了第一個設計的調變器架構,在整個電路中僅僅使用了一個運算放大器便能完成三階的雜訊整形能力。為了在不使用功率可觀的放大器狀態下實現量化器的加法器,我們改為採用結合於四位元逐漸趨近式類比數位轉換器電容陣列的電容式被動加法器。第三個設計例子把主動加法器與最後一級的積分器合併,並利用時間共享技術於第二與第三級的積分器,使得在同一時脈相位下可共同使用ㄧ個運算放大器。又因為第一級積分器的操作相位不同於第二與第三級的相位,如此ㄧ來,三個積分器只需要用到ㄧ個運算放大器,大幅降低了功率消耗。

在放大器的部分,共有三個技術被提出:第一個技術為可分離式的放大器,它擁有兩個組態模式,其可拆解為兩個相同尺寸的小放大器或結合成ㄧ個大的放大器。此法可以增加放大器功率的使用率並減少共享級電路的殘餘訊號。在ㄧ個雙相位時脈系統中,此放大器在其中ㄧ個相位時可以分解為兩個相同小放大器同時給兩個電路去應用;而在另一個相位時,此兩個放大器可合併為ㄧ個大的放大器給另個電路使用。相比於傳統的運算放大器共享技術,在分解模式下,可以達到更高功耗效率的放大器安排。進而,基於這個可分離式放大器的概念,ㄧ個部分可開關的放大器被提出來避免切換電容電路中於任ㄧ操作時脈的過剩功率消耗。在此架構放大器中,可以開關的部分與持續導通的部分之比例設定可以被調整,用以最佳化放大器在整個時脈的平均功率消耗。最後,我們還提出了一個分裂電容式且時間對準的具相關性雙重取樣技術,此方法可以解決傳統具相關性雙重取樣技術所遭遇的雙倍電容負載及一次運轉需要三個時脈相位才能完成的問題。此外,在預估計的時脈相位時所需的額外電容組合與用來儲存有限增益誤差的電容都可以被省略。
This dissertation investigates low-power technologies for delta-sigma modulators (DSMs) toward the wide-bandwidth development and additionally presents two amplifier’s technologies respectively for improving the memory effect, resulting from operational amplifier (opamp) sharing, and saving the unnecessary opamp power for the discrete-time switched-capacitor (SC) circuits.

For the DSM part, the techniques both on architectural and circuit level to achieve the low-power purpose are presented. The proposed three third-order low-distortion DSM structures are capable of minimizing the number of used opamps and maximizing the utilization of their power; they prolong the critical feedback path timing to be half clock period, leading to that other low-speed but high power-efficient analog-to-digital converter (ADC) types can be adopted as a quantizer and not be confined to the flash ADC anymore. For dealing with the mismatch of the feedback digital-to-analog converter (DAC), a simplified data weighted averaging (SDWA) algorithm is presented to alleviate not only the nonlinearity, but also the hardware implementation compared with the conventional DWA. In the first design, a double integrator structure is built as the second integrator to enhance the efficiency of opamp sharing applied between the first two integrators. A 4-bit cyclic ADC with a loading-free technique is utilized as a quantizer, which shares an opamp with the active adder. In contrast to the conventional DSM requiring four opamps, the proposed structure just employs two opamps including the active adder and quantizer. The second design is to simplify the modulator structure of the first one and just uses single opamp to accomplish third-order noise-shaping ability in the whole circuit. To realize the adder in front of quantizer without employing the huge-power opamp, a capacitive passive adder, which is the DAC array of a 4-bit successive-approximation-type quantizer, is used. The third design merges the active adder into the last integrator and exploits the timing-sharing technique between the second and third integrators during one clock phase. Further, since the operation phase of the first integrator is different to those of the second and third ones, the three integrators are realized in just single opamp by the opamp sharing. Therefore, the power consumption can be reduced greatly.

In the amplifier part, three techniques are proffered: The first is a splitable amplifier that can be either decomposed into two identical halves or merged for enhancing the utilization of amplifier power and alleviate the residue of the shared circuit stage. In a two-phase clock system, the amplifier can be split into two identical small amplifiers in one of the two phases simultaneously for use in two circuits and the two small amplifiers can be merged into one amplifier in the other phase for another circuit. Compared with conventional opamp sharing, a more power-efficient amplifier arrangement is achieved in split mode. Furthermore, a partial switchable amplifier, based on the concept of the splitable amplifier, is proposed to avoid the superfluous power consumption during one of operation phases in SC circuits. Depending on the required amplifier bandwidth, the selection of the proportion of the switchable part to the always on part can be used to optimize power consumption. Finally, we propose a split-capacitor time-aligned correlated double sampling (CDS) technique that can resolve both the problems of the double capacitance loading and three phases per operation in conventional CDS technique. In addition, the capacitor set during prediction phase and extra capacitor for storing the finite gain error can be saved.
Abstract (Chinese) i
Abstract (English) iii
Acknowledgement vii
Table of Contents xi
List of Tables xiv
List of Figures xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Dissertation Contribution 3
1.3 Organization of Dissertation 4
Chapter 2 Low-Distortion and Power-Efficient Delta-Sigma Modulators: A Review of Literature 5
2.1 Background 5
2.2 Low-Distortion DSM Structures 7
2.3 Prior Arts in Low Power DSMs 12
Chapter 3 Low Power Delta-Sigma Modulator Designs 25
3.1 Third-Order Low-Distortion Delta-Sigma Modulator with Opamp Sharing and Relaxed Feedback Path Timing 25
3.1.1 Proposed Modulator Architecture 26
3.1.2 Circuit Implementation and Design Considerations 31
3.1.3 Simulation Results 42
3.2 Single Opamp Third-Order Low-Distortion Delta-Sigma Modulator with SAR Quantizer Embedded Passive Adder 45
3.2.1 Proposed Modulator Architecture 45
3.2.2 Exploration of the Opamp-Sharing Memory Effect 50
3.2.3 Circuit Implementation and Design Considerations 55
3.2.4 Simulation and Measurement results 64
3.3 Third-Order Delta-Sigma Modulator with Timing-Sharing Opamp-Sharing Technique 69
3.3.1 Proposed Topology 70
3.3.2 Circuit Implementation 74
3.3.3 Simulation Results 81
3.4 Simplified Data Weighted Averaging Algorithm 84
3.4.1 Overview of Conventional DWA Algorithm 86
3.4.2 Introduction of Merged-Capacitor Switching (MCS) Technique 87
3.4.3 Proposed SDWA algorithm 89
3.4.4 Circuit implementation 92
3.5 Summary 97
Chapter 4 Design Techniques of Splitable, Partial Switchable Amplifiers, and Split-Capacitor TA-CDS for Opamp Based Circuits 99
4.1 Background 99
4.1.1 Overview of memory effect 100
4.1.2 Overview of Correlated Double Sampling (CDS) Technique 104
4.2 Splitable Amplifier Technique and Its Application for Opamp Sharing to Cancel Memory Effect 113
4.2.1 Concept and Design Example 113
4.2.2 Analysis of Gain and Bandwidth 122
4.2.3 Circuit Implementation and Simulation Results 124
4.3 Partial Switchable Amplifier Technique 139
4.3.1 Concept and Design Example 140
4.3.2 Circuit Implementation and Simulation Results 142
4.4 Split-Capacitor Time-Aligned Correlated Double Sampling Technique 148
4.4.1 Concept and Operation 150
4.4.2 Circuit Implementation and Simulation Results 154
4.5 Summary 160
Chapter 5 Conclusion and Future Work 161
5.1 Conclusion 161
5.2 Future work 163
Appendices 164
References 170
Publication and Award 179

[1]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure, IEEE J. Solid-State Circuits, vol. 45, pp. 731–740, Apr. 2010.
[2]C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. K. Bu, and C. C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387.
[3]C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18um CMOS, in Symp. VLSI Circuit Dig. Tech. Papers, June 2010, pp. 241–242.
[4]J. Craninckx and G. V. D. Plas, “A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS, in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 246–247.
[5]S. H. Cho, C. K. Lee, J. K. Kwon, and S. T. Ryu, “A 550-W 10-b 40-MS/s SAR ADC with multistep addition-only digital error correction, IEEE J. Solid-State Circuits, vol.46, pp. 1881–1892, Apr. 2010.
[6]P. Harpe, C. Zhou, X. Wang, G. Dolmans, and H. D. Groot, “A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90nm CMOS, in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 388–389.
[7]Y. Zhu, C. H. Chan, U. F. Chio, S. W. Sin, S. P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS, IEEE J. Solid-State Circuits, vol. 45, pp. 1111–1121, June 2010.
[8]G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “1-uW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications, IEEE J. Solid-State Circuits, vol. 47, pp. 2783–2795, Nov. 2012.
[9]G. Y. Huang, S. J. Chang, Y. Z. Lin, C. C. Liu, and C. P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS, in Proc. IEEE Asian Solid-State Circuits Conf. Nov. 2013, pp. 289–292.
[10]J. Y. Lin and C. C. Hsieh, “A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, pp. 70-79, Jan. 2015.
[11]M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers, IEEE J. Solid-State Circuits, vol. 38, pp. 475–482, Mar. 2003.
[12]T. Burger and Q. Huang, “A 13.5-mW 185-Msample/s-ΔΣ modulator for UMTS/GSM dual-standard IF reception, IEEE J. Solid-State Circuits, vol. 36, pp. 1868–1878, Dec. 2001.
[13]J. Koh, Y. Chio, and G. Gomez, “A 66 dB DR 1.2V 1.2mW single-amplifier double-sampling 2nd-order ΔΣ ADC for WCDMA in 90nm CMOS, in ISSCC Dig. Tech. Papers, Feb. 2005, pp. 170-171.
[14]Y. Fujimoto, Y. Kanazawa, P. L. Re, and M. Miyamoto, “An 80/100MS/s 76.3/70.1dB SNDR ΔΣ ADC for digital TV receivers, in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 76-77.
[15]L. Bos, G. Vandersteen, P. Rombouts, A. Geis, A. Morgado, Y. Rolain, G. V. Plas and J. Ryckaert, “Multirate cascaded discrete-time low-pass ΣΔ modulator for GSM/Bluetooth/UMTS, IEEE J. Solid-State Circuits, vol. 45, pp. 1198-1208, June 2010.
[16]E. Bilhan and F. Maloberti, “A wideband sigma-delta modulator with cross-coupled two-paths, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 56, pp. 886-893, May 2009.
[17]E. Bonizzoni, A. P. Perez, F. Maloberti, and M. G. Andrade, “Third-order ΣΔ modulator with 61-dB SNR and 6-MHz bandwidth consuming 6 mW, in Proc. Eur. Solid-State Circuits Conf., Sep. 2008, pp. 218–221.
[18]N. Maghari and U. Moon, “A third-order delta-sigma modulator using noise-shaped bi-directional single-slope quantizer, IEEE J. Solid-State Circuits, vol. 46, pp. 2882–2891, Dec. 2011.
[19]S. Zaliasl, S. Saxena, P. K. Hanumolu, K. Mayaram, and T. S. Fiez, “A 12.5-bit 4 MHz 13.8 mW MASH ΔΣ Modulator with multirated VCO-based ADC, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, pp. 1604-1613, Aug. 2012.
[20]R. Zanbaghi, S. Saxena, G. C. Temes, and T. S. Fiez, “A 75-dB SNDR, 5-MHz bandwidth stage-shared 2–2 MASH ΔΣ modulator dissipating 16 mW Power, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, pp. 1614-1625, Aug. 2012.
[21]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997, pp. 564-565.
[22]K. Lee, G. C. Temes, and F. Maloberti, Noise-coupled multi-cell delta-sigma ADCs, in Proc. IEEE Int. Symp. Circuits and Syst., May 2007, pp. 249–252.
[23]K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, and G. C. Temes, A noise-coupled time-interleaved delta-sigma ADC with 4.2 MHz bandwidth, 98 dB THD, and 79 dB SNDR, IEEE J. Solid-State Circuits, vol. 43, pp. 2601–2612, Dec. 2008.
[24]K. Lee, M. R. Miller, and G. C. Temes, “An 8.1mW, 82dB delta-sigma ADC with 1.9MHz BW and 98dB THD, IEEE J. Solid-State Circuits, vol. 44, pp. 2202–2211, Aug. 2009.
[25]H. San and H. Kobayashi, “Cross-noise-coupled architecture of complex bandpass ΔΣ AD modulator, IEICE Trans. Fundamentals, vol. E92-A, pp. 998–1003, Apr. 2009.
[26]Y. Nishida, K. Hamashita, and G. C. Temes, “An enhanced dual-path ΔΣ A/D converter, IEICE Trans. on Electron., vol. E93-C, pp. 884–891, June 2010.
[27]O. Rajaee, T. Musah, N. Maghari, S. Takeuchi, M. Anija, K. Hamashita, and U. K. Moon, “Design of a 79 dB 80 MHz 8X-OSR hybrid delta-sigma/pipelined ADC, IEEE J. Solid-State Circuits, vol. 45, pp. 719–730, Apr. 2010.
[28]O. Rajaee, S. Takeuchi, M. Aniya, K. Hamashita, and U. Moon, “Low-OSR over-ranging hybrid ADC incorporating noise-shaped two-step quantizer, IEEE J. Solid-State Circuits, vol. 46, pp. 2458-2468, Nov. 2011.
[29]A. P. Perez, E. Bonizzoni, and F. Maloberti, “A 88-dB DR, 84-dB SNDR very low-power single op-amp third-order  modulator, IEEE J. Solid-State Circuits, vol. 47, pp. 2107–2118, Sep. 2012.
[30]T. Oh, N. Maghari, and U. K. Moon, “A Second-Order ΔΣ ADC using noise-shaped two-step integrating quantizer, IEEE J. Solid-State Circuits, vol. 48, pp. 1465–1474, June 2013.
[31]T. Kim, C. Han, and N. Maghari, “Noise-shaped residue-discharging delta-sigma ADCs with time-modulated pulse feedback, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, pp. 2796-2804, Oct. 2014.
[32]K. T. Tiew and M. Je, “A 0.06-mm2 double-sampling single-OTA 2nd-order ΔΣ modulator in 0.18-m CMOS technology, in Proc. IEEE Asian Solid-State Circuits Conf. Nov. 2011, pp. 253–256.
[33]I. J. Chao, C. L. Hsu, B. D. Liu, S. J. Chang, C. Y. Huang, and H. W. Ting, “A third-order low-distortion delta-sigma modulator with opamp sharing and relaxed feedback path timing, IEICE Trans. Electron., vol. E95-C, pp.1799–1809, Nov. 2012.
[34]I. J. Chao, C. W. Hou, B. D. Liu, S. J. Chang, and C. Y. Huang, “A single opamp third-order low-distortion delta-sigma modulator with SAR quantizer embedded passive adder, IEICE Trans. Electron., vol. E97-C, pp. 526–537, June 2014.
[35]M. Z. Straayer and M. H. Perrott, “A 12-bit, 10 MHz bandwidth, continuous-time ADC with a 5-bit, 950 MS/s VCO-based quantizer, IEEE J. Solid-State Circuits, vol. 43, pp. 805–814, Apr. 2008.
[36]M. Park and M. H. Perrott, “A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time delta-sigma ADC with VCO-based integrator and quantizer implemented in CMOS, IEEE J. Solid-State Circuits, vol. 44, pp. 3344–3358, Dec. 2009.
[37]G. Taylor and I. Galton, “A mostly-digital variable-rate continuoustime delta-sigma modulator ADC, IEEE J. Solid-State Circuits, vol.45, pp. 2634–2646, Dec. 2010.
[38]T. K. Jang, J. Kim, Y. G. Yoon, and S. H. Cho, “A highly-digital VCO-based analog-to-digital converter using phase interpolator and digital calibration, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, pp. 1368–1372, Aug. 2012.
[39]W. Yu, J. Kim, K. S. Kim, and S. H. Cho, “A time-domain high-order MASH delta sigma ADC using voltage-controlled gated-ring oscillator, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, pp. 856-866, Apr. 2013.
[40]H. San, H. Konagaya, F. Xu, A. Motozawa, H. Kobayashi, K. Ando, H. Yoshida, C. Murayama, and K. Miyazawa, “Novel architecture of feedforward and second-order multibit ΔΣAD modulator, IEICE Trans. Fundamentals, vol. E91-A, pp. 965–970, Apr. 2008.
[41]K. Lee and G. C. Temes, “Improved low-distortion ΣΔ ADC topology, in Proc. IEEE Int. Symp. Circuits and Syst., May 2009, pp. 1341–1344.
[42]I. J. Chao, W. C. Chen, C. M. Kuo, B. D. Liu, H. W. Ting, S. J. Chang, and C. Y. Huang, “A low-distortion relaxed-DEM-timing delta-sigma modulator without extra adder in the quantizer Input, in Proc. 22nd VLSI Design/CAD Symp., Aug. 2011, pp. 480–483.
[43]I. J. Chao, C. M. Kuo, B. D. Liu, C. Y. Huang, and S. J. Chang, “A 3rd-order delta-sigma modulator with timing-sharing opamp-sharing technique, in Proc. IEEE Int. Symp. Circuits and Syst., May 2013, pp. 2002–2005.
[44]L. Liu, D. Li, Y. Y. L. Chen, and Z. Wang, “A 95dB SNDR audio ΔΣmodulator in 65nm CMOS, in Proc. IEEE Cust. Int. Circuits Conf., Sep. 2011, pp. 1–4.
[45]Z. Chen, Y. Jiang, C. Cai, H. G. Wei, S. W. Sin, S. P. U, Z. Wang, and R. P. Martins, “A 22.4 W 80dB SNDR sigma-delta modulator with passive analog adder and SAR quantizer for EMG application, in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 1–4.
[46]K. Yamamoto and A. C. Carusone, “A 1-1-1-1 MASH delta-sigma modulator with dynamic comparator-based OTAs, IEEE J. Solid-State Circuits, vol. 47, pp. 1866–1883, Aug. 2012.
[47]A. F. Yeknami, F. Qazi, and A. Alvandpour, “Low-Power DTΔΣ modulators using SC passive filters in 65 nm CMOS, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 61, pp. 358-370, Feb. 2014.
[48]A. Nilchi and D. A. Johns, “A low-power delta-sigma modulator using a charge-pump integrator, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, pp. 1310-1321, May 2013.
[49]O. Rajaee and U. K. Moon, “Highly linear noise-shaped pipelined ADC utilizing a relaxed accuracy front-end, IEEE J. Solid-State Circuits, vol. 48, pp. 502–515, Feb. 2013.
[50]J. A. Fredenburg and M. P. Flynn “A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC, IEEE J. Solid-State Circuits, vol. 47, pp. 2898–2904, Dec. 2012.
[51]C. C. Lee, E. Alpman, S. Weaver, C. Y. Lu, and J. Rizk, “A 66dB SNDR 15MHz BW SAR assisted ΔΣ ADC in 22nm tri-gate CMOS, in Symp. VLSI Circuit Dig. Tech. Papers, June 2013, pp. C64–C65.
[52]A. Gharbiya and D. A. Johns, “A 12-bit 3.125 MHz bandwidth 0–3 MASH delta-sigma modulator, IEEE J. Solid-State Circuits, vol. 44, pp. 2010–2018, July 2009.
[53]R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.
[54]J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “Wideband low-distortion ΔΣ ADC topology, Electron. Lett., vol. 37, pp. 737-738, June 2001.
[55]R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, Design-oriented estimation of thermal noise in switched-capacitor circuits, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 52, pp. 2358-2368, Nov. 2005.
[56]F. Maloberti, Data Converters. Dordrecht, Netherlands: Springer, 2007.
[57]H. Z. Hoseini, O. Shoaei, and I. Kale, “A new structure for capacitor-mismatch-insensitive multiply-by-two amplification, in Proc. IEEE Int. Symp. Circuits and Syst., May 2006, pp. 4879–4882.
[58]P. Y. Wu, V. S. L. Cheung, and H. C. Luong, “A 1-V 100-MS/s 8-bit CMOS switched-opamp pipelined ADC using loading-free architecture, IEEE J. Solid-State Circuits, vol. 42, pp.730–738, Apr. 2007.
[59]J. F. Lin, S. J. Chang, C. F. Chiu, H. H. Tsai and J. J. Wang, Low-power and wide-bandwidth cyclic ADC with capacitor and opamp reuse techniques for CMOS image sensor application, IEEE Sensors Journal, vol. 9, pp.2044–2054, Dec. 2009.
[60]R. T. Baird and T. S. Fiez, “Linearity enhancement of multibit ΔΣ A/D and D/A converters using data weighted averaging, IEEE Trans. Circuit Syst. II, vol. 42, pp. 753–762, Dec. 1995.
[61]S. M. Yoo, J. B. Park, S. H. Lee, and U. K. Moon, A 2.5-V 10-b 120-MSample/s CMOS pipelined ADC based on merged-capacitor switching, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 51, pp. 269–275, May 2004.
[62]S. M. Yoo, T. H. Oh, J. W. Moon, S. H. Lee, and U. K. Moon, A 2.5-V 10-b 120 -MSample/s CMOS pipelined ADC with high SFDR, in Proc. IEEE Cus. Int. Circuits Conf., Aug. 2002, pp. 441–444.
[63]G. Y. Huang, “Easily-integrated and energy-efficient design techniques for successive-approximation analog-to-digital converters, Ph.D. dissertation, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R. O. C., 2012.
[64]Y. C. Huang and T. C. Lee, “A 10-bit 100-MS/s 4.5-mW pipelined ADC with a time-sharing technique, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, pp. 1157–1166, June 2011.
[65]W. Shen and G. C. Temes, “Double-sampled ΔΣ modulator relaxed feedback timing, in Proc. IEEE Int. Midwest Symp. Circuits and Syst., Aug. 2009, pp. 393–396.
[66]Y. Z. Lin, S. J. Chang, Y. T. Liu, C. C. Liu, and G. Y Huang, “An asynchronous binary-search ADC architecture with a reduced comparator count, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, pp.1829–1837, Aug. 2010.
[67]B. H. Leung and S. Sutarja, Multibit sigma-delta A/D converter incorporating a novel class of dynamic element matching techniques, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 39, pp. 35–51, Jan. 1992.
[68]L. R. Carley, A noise-shaping coder topology for 15+ bit converters, IEEE J. Solid-State Circuits, vol. 24, pp. 267–273, Apr. 1989.
[69]S. T. Ryu, B. S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with opamp current reuse, IEEE J. Solid-State Circuits, vol. 42, pp. 475-485, Mar. 2007.
[70]C. H. Kuo, T. H. Kuo, and K. L. Wen, “Bias-and-input interchanging technique for cyclic/pipelined ADCs with opamp sharing, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 57, pp. 168-172, Mar. 2010.
[71]M. Y. Kim, J. Kim, T. Lee, and C. Kim, “10-bit 100-MS/s pipelined ADC using input-swapped opamp sharing and self-calibrated V/I converter, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, pp. 1438-1447, Aug. 2011.
[72]K. Chandrashekar and B. Bakkaloglu, “A 10 b 50 MS/s opamp-sharing pipeline A/D with current-reuse OTAs, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, pp. 1610-1617, Sep. 2011.
[73]K. H. Lee, K. S. Kim, and S. H. Lee, “A 12b 50 MS/s 21.6 mW 0.18 m CMOS ADC maximally sharing capacitors and op-amps, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, pp. 2127-2136, Sep. 2011.
[74]B. W. Koo, S. J. Park, G. C. Ahn, and S. H. Lee, “A single amplifier-based 12-bit 100MS/s 1V 19mW 0.13m CMOS ADC with various power and area minimized circuit techniques, IEICE Trans. Electron., vol. E94-C, pp. 1282-1288, Aug. 2011.
[75]H. J. Kim, T. J. An, S. M. Myung, and S. H. Lee, “Time-interleaved and circuit-shared dual-channel 10 b 200 MS/s 0.18 um CMOS analog-to-digital convertor, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, pp. 2206-2213, Dec. 2013.
[76]Z. Wang, M. Wang, W. Gu, C. Chen, F. Ye, and J. Ren, “A high-linearity pipelined ADC with opamp split-sharing in a combined front-end of S/H and MDAC1, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, pp. 2834-2844, Nov. 2013.
[77]C. S. Shin and G. C. Ahn, “A 10-bit 100-MS/s Dual-Channel Pipelined ADC Using Dynamic Memory Effect Cancellation Technique, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, pp. 274-278, May 2011.
[78]K. Haug, G. C. Temes, and K. Martin, “Improved offset-compensation schemes for SC circuits, in Proc. Int. Symp. Circuits and Syst., May 1984, pp. 1054-1057.
[79]K. Nagaraj, T. R. Viswanathan, K. Singhal, and J. Vlach, “Switched-capacitor circuits with reduced sensitivity to amplifier gain, IEEE Trans. Circuits Syst., vol. CAS-34, pp. 571-574, Apr. 1987.
[80]H. Yoshizawa and G. C. Temes, “Switched-capacitor track-and-hold amplifiers with low sensitivity op-amp imperfections, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 54, pp. 193-199, Jan. 2007.
[81]J. Li and U. K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique, IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sep. 2004.
[82]Y. J. Kook, J. Li, B. Lee, and U. K. Moon, “Low-power and high-speed pipelined ADC using time-aligned CDS technique, in Proc. IEEE Cus. Int. Circuits Conf., Sep. 2007, pp. 321-324.
[83]J. F. Lin, S. J. Chang, C. C. Liu, and C. H. Huang, “A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 57, pp. 163-167, Mar. 2010.
[84]B. Razavi, Design of Analog CMOS Integrated Circuits. Boston. MA: McGraw-Hill, 2001, pp. 60-67.
[85]D. Garrity and P. Rakers, “Common-mode output sensing circuit, U.S. Patent 5 894 284, Apr. 13, 1999.
[86]O. Choksi and L. R. Carley, “Analysis of switched-capacitor common-mode feedback circuit, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 50, pp. 906-917, Dec. 2003.
[87]M. A. N. Haroun and A. A. Hamoui, “Design and verification of a switchable opamp for switched-capacitor integrators, IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 61, pp. 738-742, Oct. 2014.
[88]J. K. Woo, H. Lee, H. C. Kim, D. K. Jeong, and S. Kim, “1.2 V 10-bit 75 MS/s pipelined ADC with phase-dependent gain-transition CDS, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, pp. 585-592, Mar. 2014.
[89]O. A. Hafiz, X. Wang, P. J. Hurst, and S. H. Lewis, “Immediate calibration of operational amplifier gain error in pipelined ADCs using extended correlated double sampling, IEEE J. Solid-State Circuits, vol. 48, pp.749–759, Mar. 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top