( 您好!臺灣時間:2022/12/03 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):The Implementation and Verification of Model Predictive Control for Precision Tracking- an Example with the AFM
指導教授(外文):Szu-Chi Tien
外文關鍵詞:Model Predictive ControlGraphical User InterfaceReal Time Data ExchangeAtomic Force Microscope
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究以原子力顯微鏡為例,以模型預測控制器來達成精密追跡的目標,並獲得最佳化輸入。透過控制原子力顯微鏡的 z 軸致動器來追蹤樣品形貌。此外,藉由Microsoft Foundation Class(MFC)軟體設計之圖形使用者介面(GUI)與原子力顯微鏡整合,並利用實時資料交換(Real Time Data eXchange,RTDX)實現主/從處理器間的資料傳輸,使系統的操作上更為簡便如直接。實驗結果顯示,設計之控制器可達到精確地追蹤樣品形貌,且
This research utilizes model predictive control to achieve precision tracking with optimal input, and demonstrates this method with an atomic force microscope
example. By controlling the actuator of the atomic force microscope in z-axis, the sample topography can be tracked. Besides, a graphical user interface(GUI) constructed with Microsoft Foundation Class (MFC) is integrated with the atomic force microscope and the data exchange between the master and the slave processors
is implemented with real time data exchange technique. Therefore, the overall system becomes more convenient and intuitive for operation. Experimental results show that the proposed controller can track the sample topography precisely with the optimal consideration on both performance and input.
圖目錄 iii
表目錄 vii
符號表 viii
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第二章 原理與問題 4
2.1 原子力顯微鏡原理 4
2.2 問題描述 9
第三章 系統架構 14
3.1 二維壓電定位平台 14
3.2 步進馬達升降平台 19
3.3 探針驅動系統 20
3.4 光路感測系統 23
3.5 圖形使用者介面 25
3.5.1 介面的介紹與建立 25
3.5.2 RTDX通訊傳輸數據 31
第四章 控制理論與模擬 34
4.1 模型預測控制 34
4.2 系統建模 44
4.2.1 二維壓電平台動態系統建模 44
4.2.2 z 軸探針系統建模 50
4.3 二維壓電平台的控制 57
4.4 z 軸系統控制 62
第五章 實驗與討論 77
5.1 實驗設備與實驗流程 77
5.1.1 實驗設備 78
5.1.2 實驗流程 86
5.2 實驗結果 87
5.3 討論 100
第六章 結論與展望 105
6.1 結論 105
6.2 未來工作 105
參考文獻 106
附錄A 電路圖 111
附錄B 實驗器材規格 116
附錄C 校正數據 123
附錄D 權重W 126
附錄E 控制模擬比較 127
附錄F 掃描實驗比較 129
附錄G 圖形使用者介面 130
[1] H. Wang. Inversion-Based Control Tools for High-Speed Precision Tracking/Transition in Emerging Applications. PhD thesis, The State University of New Jersey, 2013.
[2] I. Abdulljabaar S. M. Raafat, R. Akmeliawati. Robust h∞ controller for high precision positioning system, design, analysis, and implementation. Intelligent Control and Automation, 3(3):262–273, 2012.
[3] R. Cao and K. S. Low. A repetitive model predictive control approach for precision tracking of a linear motion system. IEEE Transactions on industrial electronics, 56(6), 2009.
[4] K. Kim. Feedforward control approach to precision trajectory design and tracking : Theory and application to nano-mechanical property mapping using Scanning Probe Microscope. PhD thesis, Iowa State University, 2009.
[5] Z. Lin and A. Saberi. Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks. Systems & Control Letters,21:225–239, 1993.
[6] Y. Li and J. Bechhoefer. Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope. Review of Scientific Instruments, 78:013702, 2007.
[7] D.W. Gu, P. H. Petkov, and M. M. Konstantinov. Robust control design with matlab. Springer, 2005.
[8] R. Palm. Sliding mode fuzzy control. IEEE International Conference on Fuzzy Systems, pages 519–526, 1992.
[9] B. M. Badr and W. G. Ali. Nanopositioning fuzzy control for piezoelectric actuators. International Journal of Engineering and Technology, 10(1):70–74,2010.
[10] L. X. Wang. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on fuzzy systems, 1(2):146–155, 1993.
[11] J. G. ZIEGLER and N. B. NICHOLS. Optimum settings for automatic controllers.Transactions of the ASME, pages 759—-768, 1942.
[12] J. L. Chu. Model-based adaptive control for precision afm scan. Master’s thesis, National Cheng Kung University, 2014.
[13] C. V. Rao D. Q. Mayne, J. B. Rawlings and P. O. M. Scokaert. Constrained model predictive control: Stability and optimality. Automatica, 36:789–814,2000.
[14] K. Ohishi T. Miyazaki N. Sakimura, T. Ohashi. Two-stage feedforward tracking control system with error-based disturbance observer for optical discs.Optical Review, 21:578–584, 2014.
[15] R. de Callafon H. Zhong, L. Pao. Feedforward control for disturbance rejection:Model matching and other methods. Proceedings of the Chinese Conference on Decision and Control, pages 3525–3533, 2012.
[16] G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Physical review letters, 56(9):930–933, 1986.
[17] S. Cetinkunt S. S. Ku, U. Pinsopon and S. Nakajima. Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner.IEEE/ASME Trans. Mechatronics, 5(3):273–280, 2000.
[18] G. Binnig and H. Rohrer. Scanning tunneling microscopy—from birth to adolescence. REVIEWS OF MODERN PHYSICS, 59(3):615–625, 1987.
[19] P. Hinterdorfer C. L. Grimellec D. Navajas J. L. Pellequer P. Parot, Y.F. Dufrˆene and S. Scheuring. Past, present and future of atomic force microscopy in life sciences and medicine. JOURNAL OF MOLECULAR RECOGNITION, 20:418–431, 2007.
[20] C. C. Williams Y. Martin and H. K. Wickramasinghe. Atomic force microscope-force mapping and profiling on a sub 100 ˙A scale. Journal of applied physics, 61(10):4723, 1987.
[21] Q. Thong and D. Inniss. Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy. Surfbce Science Letters, 290:688–692,1993.
[22] C. L. Grimellec T. Ando I. Casuso, N. Kodera and S. Scheuring. Contactmode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophysical Journal, 97:1354–1361, 2009.
[23] J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society, 43(5):461,1931.
[24] W.S. Chen. Design,manufacturing,and control of atomic force microscopies.Master’s thesis, National Cheng Kung University, 2013.
[25] N. F. De Rooij N. Blanc, J. Brugger and U. Durig. Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,14(2):901–905, 1996.
[26] R. C. Barrett M. Tortonese and C. F. Quate. Atomic resolution with an atomic force microscope using piezoresistive detection. Applied physics letters,62:834, 1993.
[27] D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 55(25):2588–2590, 1989.
[28] N. F. Van Hulst C. A. J. Putman, B. G. De Grooth and J. Greve. A detailed analysis of the optical beam deflection technique for use in atomic force microscopy.
Journal of applied physics, 72(1):6–12, 1992.
[29] Peter Eaton and Paul West. Atomic Force Microscopy. Oxford University Press Inc, 2010.
[30] K. K. Leang. Iterative learning control of hysteresis in piezo-based nanopositioners: theory and application in atomic force microscopes. PhD thesis,
University of Washington, 2004.
[31] M. Kamlah D. Zhou. Room-temperature creep of soft pzt under static electrical and compressive stress loading. Acta Materialia, 54:1389–1396, 2006.
[32] P. J. Ko. Design, manufacturing and control of piezo-stage. Master’s thesis,National Cheng Kung University, 2010.
[33] Y.P. Wang. The compensation for coupling-effect in multi axis motion: a tracking and levelling example with postioning stages. Master’s thesis, National
Cheng Kung University, 2012.
[34] G. Baluta. Microstepping mode for stepper motor control. In Signals, Circuits and Systems, 2007. ISSCS 2007. International Symposium on, volume 2,pages 1–4, 2007.
[35] A Brief History of User Interfaces. http://www.catb.org/esr/writings/taouu/html/ch02.html.
[36] PARC. http://www.parc.com/about/.
[37] W. Isaacson. Steve Jobs. Kindle Edition, 2011.
[38] TEXAS INSTRUMENTS. http://processors.wiki.ti.com/index.php/Real_Time_Data_eXchange_%28RTDX%29.
[39] G. Lin. Pattern recognition and dsp realization in micro-object manipulation.Master’s thesis, National Cheng Kung University, 2005.
[40] L. Wang. Model Predictive Control System Design and Implementation Using MATLAB®. Springer, 2009.
[41] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,2010.
[42] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma. Design and modeling of a high-speed afm-scanner. Control Systems Technology, IEEE Transactions on, 15(5):906–915, 2007.
[43] K. Ogata. Modern control engineering. Pearson Education International,2002.
[44] Budget Sensors. Probe ContAl Datasheet.
[45] Pintek Electronics Co., Ltd. HA-205 spections.
[46] Piezomechanik: GmbH. Piezo-mechanical and electrostrictive Stack and ring actuators: Product range and Technical data.
[47] Raise Electro-optics Co., Ltd. Visible laser diode.
[48] Advanced Photonix, Inc. Red enhanced bi-cell silicon photodiode.
[49] Vishay Semiconductors. TCST2103 data sheet.
[50] Piezomechanik. PSt-HD200 data sheet.
第一頁 上一頁 下一頁 最後一頁 top