跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁珊
研究生(外文):Yu-ShanLin
論文名稱:以分子動力學分析Si/Ge核-殼奈米線之機械性質
論文名稱(外文):A Study on Mechanical Behaviors of Si/Ge core-shell nanowires by Molecular Dynamics Simulation
指導教授:陳鐵城
指導教授(外文):Tei-Chen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:97
中文關鍵詞:矽鍺核/殼奈米線分子動力學奈米線拉伸
外文關鍵詞:SiGeCore/shell nanowireMolecular dynamicsNanowireTensile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究重點在於探討矽鍺核-殼奈米線在微奈米尺度下的力學及材料特性。在模擬理論方法上,使用分子動力學法與Tersoff勢能函數作為理論基礎,並配合開放式軟體LAMMPS做為工具,分析在不同結構、方向、長度、溫度、厚度等條件下之矽鍺核-殼奈米線受單軸拉伸,材料的滑移系統、強度、應力分佈以及奈米線在拉伸的斷裂過程。其結果顯示不同方向的單晶矽、單晶鍺、矽-核/鍺-殼或鍺-核/矽-殼奈米線中,楊氏模數及極限強度的大小為(111)>(110)>(100)。而在(111)方向中,楊氏模數的大小為矽-核/鍺-殼>單晶矽>單晶鍺>鍺-核/矽-殼奈米線,其值分別為153.42、128.63、117.93及115.68 GPa。極限強度會隨溫度降低、應變率增加以及長度增加而升高。而在相同截面積下,矽-核 /鍺-殼奈米線的拉伸強度會比鍺-核 /矽-殼奈米線來的高。此外,在奈米線拉伸過程中,可以觀察出無論是矽-核/鍺-殼或鍺-核/矽-殼結構,差排及錯位皆由最外層開始發生,且慢慢往內部移動。
This study investigates the nanoscale mechanical behavior of Si/Ge core-shell nan-owires. Molecular dynamics simulations were carried out using the program package LAMMPS with Tersoff potential. A simulation is performed on the behavior of slip system, strength, stress distribution and fracture process with different structure, orientation, length, temperature, and shell thickness under uniaxial tension. The results show the mag-nitude of Young's modulus and ultimate strength of single-crystal silicon, single crystal germanium, Si-core/Ge-shell or Ge-core/Si-shell nanowire is in the order of (111)>(110)>(100). The magnitude of Young's modulus in all nanowires with (111) direction is Si-core/Ge-shell>single-crystal silicon>single crystal germanium>Ge or Ge-core/Si-shell nanowire and their values are 153.42, 128.63, 117.93 and 115.68 GPa, respectively. The ultimate strength increases with decreasing temperature and increasing strain rate and length. The ultimate strength of Si-core/Ge-shell nanowire is higher than Ge-core/Si-shell nanowire with the same length and cross-sectional area. In addition, the slip and dislocation initiate near the shell surface and then gradually propagate toward core region during tensile process of Si-core/Ge-shell or Ge-core/Si-shell nanowire.
目錄
摘要 I
致謝 IX
目錄 X
表目錄 XIII
圖目錄 XIV
符號說明 XIX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-2-1 分子動力學之文獻回顧 5
1-2-2 矽與鍺奈米線之文獻回顧 6
1-3 研究動機與目的 10
1-4 本文架構 11
第二章 分子動力學基本原理 12
2-1 分子動力學基本假設 12
2-2 分子間作用力與勢能函數 14
2-2-1 分子間作用力 14
2-2-2 勢能函數 15
2-3 系統之初始速度 22
2-4 系統溫度修正 22
2-5 截斷半徑與鄰近表列法 24
2-6 週期邊界條件與最小映像法則 29
2-7 預測修正法 32
2-8 無因次化 35
2-9 原子級應力 36
第三章 模擬分析理論架構 38
3-1 初始物理模型 38
3-2 勢能函數之選擇 47
3-3 模擬流程 48
第四章 結果分析與討論 51
4-1 奈米線模型平衡狀態 51
4-2 奈米線拉伸 55
4-2-1 單晶矽與單晶鍺奈米線面方向效應 55
4-2-2 矽-核/鍺-殼與鍺-核/矽 -殼奈米線面方向效應 58
4-2-3 層數及厚度效應 63
4-3 溫度效應變形與破壞機制 83
4-4 拉伸速度與破壞機制 86
4-5 奈米線長度與破壞機制 88
第五章 結論與未來展望 90
5-1 結論 90
5-2 未來展望與建議 92
參考文獻 93





[1]M. F. Ashby, D. L. Schodek, and P. J. Ferreira, “nanotechnologies and design: an introduction for engineers and architects, Butter-worth-Heinemann, Nanomaterials, 2009
[2]G. Binnig and H. Rohrer, “Scanning tunneling microscopy, Surface Science, Vol.126, pp.236-244, 1983.
[3]G. Binnig, C.F. Quate, and Ch. Gerber, “Atomic force microscope,i c Physical Review Letters,Vol.56, pp.930-933, 1986.
[4]S Iijima., “Helical microtubulesof graphitic carbon, Nature, Vol.354, pp.56-58, 1991.
[5]李思毅、李佳穎、曾俊元, “奈米材料的製程及其潛在的應用, 物理雙月刊(廿六卷三期) , 2004年6月。
[6]J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829, 1950.
[7]B. J. Alder and T. E. Wainwright, “Studies in molecular dynamics. I. general method, J. Chem. Phys., Vol. 31, No. 2, pp. 459-466, 1959.
[8]G. Ciccotti and W. G. Hover, “Molecular dynamics simulation of statistical mechanics system, amsterdam, North Holland, 1986.
[9]M. P. Allen and D. J. Tildesley, “Computer simulation of liquids, Oxford, Claredon, 1987.
[10]J. M. Hailie, “Molecular dynamics simulation elementary method, New York: Wiley, 1993.
[11]L. Verlet, “Computer experiments on classical fluids. I. thermodynamical Properties of Lennard-Jones molecules, Physical Review., Vol. 159, No. 1, pp. 98-103, 1967.
[12]B. Quentrec and C. Brot, “New method for searching for neighbors in molecular dynamics computations, J. Comput. Phys., Vol. 13, No. 3, pp. 430-432, 1975.
[13]D. C. Rapaport, “Molecular dynamics study of Rayleigh-Bénard convection, Layered cell link, Vol. 60, No. 24, pp. 2480-2483, 1988.
[14]G. S. Grest, B. D. Gre, and K. Kremer, “Vectorized Link Cell fortran code for molecular dynamics simulations for a large number of particles, Comput. Phys. Commun., Vol. 55, No. 3, pp. 269-289, 1989.
[15]D. Roundy and M. L. Cohen, “Ideal strength of diamond, Si, and Ge, Physical Review B, Vol. 64, 2001.
[16]R. Komanduri, N. Chandrasekaran, and L. M. Raff, “Molecular dynamic simulations of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) applications, 2003.
[17]Y. Yano, T. Nakajima, and K. Shintani, “Mechanical properties of Ge/Si Core-Shell nanowires under a uniaxial tension, Mater. Res. Soc. Symp. Proc. , Vol. 958 , 2007
[18]X. W. Liu, J. Hu, and B. C. Pan, “The composition-dependent mechanical properties of Ge/Si core–shell nanowires, Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, pp. 3042-3048, 2008.
[19]A. Motayed and A. V. Davydov, “GaN-nanowire/amorphous-Si core-shell heterojunction diodes, Applied Physics Letters, Vol. 93, pp. 193102, 2008.
[20]Y. Jing, Q. Meng, and Y. Gao, “Molecular dynamics simulation on the buckling behavior of silicon nanowires under uniaxial compression, Computational Materials Science, Vol. 45, pp. 321-326, 2009.
[21]H. j. Shen, “Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires, Frontiers of Materials Science in China, Vol. 3, pp. 415-420, 2009.
[22]X. Peng and P. Logan, “Electronic properties of strained Si/Ge core-shell nanowires, Applied Physics Letters, Vol. 96, p. 143119, 2010.
[23]X. Peng, F. Tang, and P. Logan, “First principles study of Si/Ge Core-Shell nanowires - structural and electronic properties, Nanowires - Fundamental Research, 2011.
[24]K. Kang and W. Cai, “Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations, International Journal of Plasticity, Vol. 26, pp. 1387-1401, 2010.
[25]H. K. Chang and S. C. Lee, “The growth and radial analysis of Si/Ge core-shell nanowires, Applied Physics Letters, Vol. 97, p. 251912, 2010.
[26]M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, “Significant reduction of thermal conductivity in Si/Ge core-shell nanowires, Nano Lett, Vol. 11, pp. 618-23, Feb 9 2011.
[27]N. Liu, N. Lu, Y. X. Yao, Y. R. Li, C. Z. Wang, and K. M. Ho, “Strain effects in Ge/Si and Si/Ge Core/Shell nanowires, The Journal of Physical Chemistry C, Vol. 115, pp. 15739-15742, 2011.
[28]H. Kallel, A. Chehaidar, A. Arbouet, and V. Paillard, “Enhanced absorption of solar light in Ge/Si core-sheath nanowires compared to Si/Ge core-sheath and Si1−xGex nanowires: A theoretical study, Journal of Applied Physics, Vol. 114, p. 224312, 2013.
[29]J. H. Irving, J. G. Kirkwood, “The statistical mechanical theory of transport properties. IV. the equations of hydrodynamics, Journal of Chemical Physics, Vol. 18, pp. 817-823, 1950.
[30]J. E. Jones, “The determination of molecular fields I. from the variation of viscosity of a gas with temperature, Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462, 1924.
[31]J. E. Lennard-Jones, “The determination of molecular fields, Proceed-ings of the Royal Society, London, Vol. 106, pp. 441-462, 1924.
[32]L. A. Girifalco and V. G. Weizer, “Application of the morse potential function to cubic metal, Phys. Rev., Vol. 114, No. 3, pp. 687-690, 1959.
[33]S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded–Atom method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt and their Alloys, Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
[34]F. Cleri and V. Rosato, “Tight-Binding potentials for transition metals and alloys, Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
[35]J. Tersoff, “New empirical model for the structure properties of Silicon, Phys. Rev. Lett., Vol. 56, pp. 632-635, 1986.
[36]J. Tersoff, “Empirical interatomic potential for Silicon with improved elastic properties, Phys. Rev. B, Vol. 38, pp. 9902-9905, 1998.
[37]J. Tersoff, “New empirical approach for the structure and energy of covalent systems, Phys. Rev. B. Vol. 37, pp. 6991-7000, 1998.
[38]J. Tersoff, “Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B, Vol. 39, pp. 5566-5568, 1989.
[39]T. Iwaki, “Molecular dynamic study on stress-strain in very thin film, JSME Int. J. Ser. A, Vol. 39, No. 3, pp. 346-353, 1988.
[40]維基百科, 鑽石晶格結構
[41]J. Tersoff, “New empirical model for the structure properties of Silicon, Phys. Rev. Lett., Vol. 56, pp. 632-635, 1986.
[42]J. Tersoff, “Empirical interatomic potential for Silicon with improved elastic properties, Phys. Rev. B, Vol. 38, pp. 9902-9905, 1998.
[43]J. Tersoff, “New empirical approach for the structure and energy of covalent systems, Phys. Rev. B., Vol. 37, pp. 6991-7000, 1998.
[44]J. Tersoff, “Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B, Vol. 39, pp. 5566-5568, 1989.
[45]X. D. Han, K. Zheng, Y. F. Zhang, X. N. Zhang, Z. Zhang, and Z. L. Wang, “Low-temperature in situ large-strain plasticity of silicon nanowires, Advanced Materials, Vol. 19, pp. 2112-2118, 2007.
[46]林彥宏,單晶矽之奈米力學特性分析,國立成功大學機械研究所,博士論文,2010.
[47]X. Wu, J. S. Kulkarn, G. Collins, N. Petkov, D. Alme´cija, J. J. Boland, et al., “Synthesis and electrical and mechanical properties of Silicon and Germanium nanowires, Chem. Mater, 2008.
[48]D. Georgakaki, O. G. Ziogos, and H. M. Polatoglou, “Vibrational and mechanical properties of Si/Ge nanowires as resonators: A molecular dynamics study, physica status solidi (a), Vol. 211, pp. 267-276, 2014.

電子全文 電子全文(網際網路公開日期:20251225)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top