|
[1]K. S. Suslick, The chemical effects of ultrasound, Scientific American, vol. 260, pp. 80-86, 1989. [2]W. T. Richards and A. L. Loomis, The chemical effects of high frequency sound waves I. A preliminary survey, Journal of the American Chemical Society, vol. 49, pp. 3086-3100, 1927. [3]P. R. Birkin, J. F. Power, A. M. Vinçotte, and T. G. Leighton, A 1 kHz resolution frequency study of a variety of sonochemical processes, Physical Chemistry Chemical Physics, vol. 5, pp. 4170-4174, 2003. [4]P. R. Gogate, S. Mujumdar, and A. B. Pandit, Large‐scale sonochemical reactors for process intensification: design and experimental validation, Journal of chemical Technology and Biotechnology, vol. 78, pp. 685-693, 2003. [5]P. R. Gogate and A. B. Pandit, Sonochemical reactors: scale up aspects, Ultrasonics Sonochemistry, vol. 11, pp. 105-117, 2004. [6]J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Saez, and J. Iniesta, Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results, Ultrasonics sonochemistry, vol. 14, pp. 19-28, 2007. [7]謝玉宸, 超音波聲化學反應器之共振模態分析與實驗, 成功大學機械工程學系學位論文, pp. 1-122, 2008. [8]姚明宗, 共振式聲化學反應器之分析與實驗, 成功大學機械工程學系學位論文, pp. 1-88, 2009. [9]徐鈺翔, 40-kHz 浸水式聲化學反應器共振空蝕模態之分析與實驗, 成功大學機械工程學系學位論文, pp. 1-116, 2011. [10]陳偉哲, 圓環型超音波發射器之研製, 成功大學機械工程學系學位論文, pp. 1-84, 2014. [11]J. Holland, Adaption in natural and artificial systems, Ann Arbor MI: The University of Michigan Press, 1975. [12]I. Patel, Ceramic Based Intelligent Piezoelectric Energy Harvesting Device: INTECH Open Access Publisher, 2011. [13]T. G. Leighton, What is ultrasound?, Progress in biophysics and molecular biology, vol. 93, pp. 3-83, 2007. [14]M. Turski, S. Clitheroe, A. Evans, C. Rodopoulos, D. Hughes, and P. Withers, Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments, Applied Physics A, vol. 99, pp. 549-556, 2010. [15]L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th Edition:Wiley-VCH, 1999. [16]B. Toukoniitty, J.-P. Mikkola, D. Y. Murzin, and T. Salmi, Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions, Applied Catalysis A: General, vol. 279, pp. 1-22, 2005. [17]P. R. Gogate, I. Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N. P. Vichare, and A. B. Pandit, Cavitation reactors: Efficiency assessment using a model reaction, AIChE Journal, vol. 47, pp. 2526-2538, 2001. [18]P. R. Gogate and A. B. Pandit, Sonochemical reactors: scale up aspects, Ultrason Sonochem, vol. 11, pp. 105-17, May 2004. [19]K. R. Morison and C. A. Hutchinson, Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation, Ultrason Sonochem, vol. 16, pp. 176-83, Jan 2009. [20]周鵬程, 遺傳演算法原理與應用: 活用 Matlab: 全華, 2001. [21]卓明, 壓電力學: 全華圖書股份有限公司公司, 2003. [22]H. L. Li, J. H. Hu, and H. L. W. Chan, Finite element analysis on piezoelectric ring transformer, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 51, pp. 1247-1254, 2004. [23]P. R. Gogate, S. Mujumdar, and A. B. Pandit, Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction, Advances in Environmental Research, vol. 7, pp. 283-299, 2003. [24]I. Tudela, V. Sáez, M. D. Esclapez, M. I. Díez-García, P. Bonete, and J. González-García, Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: A review, Ultrasonics sonochemistry, vol. 21, pp. 909-919, 2014. [25]V. S. Moholkar, Mechanistic optimization of a dual frequency sonochemical reactor, Chemical Engineering Science, vol. 64, pp. 5255-5267, 2009.
|