跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李若寧
研究生(外文):Ruo-NingLee
論文名稱:面銑刀片刃口幾何對切削係數影響之研究
論文名稱(外文):Effect of Insert Edge Geometry on Cutting Coefficients in Face Milling
指導教授:王俊志
指導教授(外文):Jiunn-Jyh Junz Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:面銑加工刃口幾何切削係數田口法反應曲面法
外文關鍵詞:face millingedge geometrycutting coefficientTaguchi methodresponse surface methodology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雙面負角銑刀片是未來捨棄式銑刀片發展的一大趨勢,雙倍刀刃數具經濟上的優勢,刀刃強度佳不易崩壞,負角切削造成較大的軸向切削力,對加工表面完整性及加工穩定性皆有正面影響,但其較大的切削力,將縮短刀具壽命。切削係數是預測銑削力的重要參數,因此本文以切削係數作為設計目標,針對面銑加工用負角銑刀片進行刃口幾何設計之研究。為減少實驗的時間與成本,使用有限元素分析軟體來模擬切削情形,利用田口方法,探討刃口幾何對切削係數的影響。並運用反應曲面法中的Box-Behnken設計,建立以進給、軸向切深與刃口幾何參數對切削係數的二階迴歸模型,再以基因演算法求取特定切削條件下的理想幾何參數,最後進行模擬與實際切削的差異比較,並驗證田口方法所分析的趨勢與迴歸模型之可靠度。模擬分析與驗證實驗的結果顯示,進給量對比切削係數有顯著的影響,進給量愈大比切削係數愈小。而在刃口幾何設計參數中,選擇較大的刃寬有助於比切削係數的減少,前傾角對比切削係數的貢獻度較大其次是刃寬,前傾角增加也有助於比切削係數之減小,但有一範圍限制。本文亦提供圓形銑刀片切屑負載之幾何分析,圓形刀片的實際切屑厚度為刀具旋轉角度、刀片半徑、軸向切深及進給量之函數。
This thesis investigates the effect of insert edge geometry on cutting coefficients in face milling. There are many advantages of negative cutting insert: stronger strength of edge, better stability, higher feed rate, and more economical because of its double blades. But large cutting force and high temperature which cannot be ignored decrease tool life. To improve these shortcomings, the design of edge geometry is the key factor. Cutting coefficients are important parameters to predict cutting forces. Therefore, Taguchi method is applied to analyze the contribution to cutting coefficient of each geometric parameter. Response surface methodology is used to establish a model for cutting coefficient evaluating by cutting depth, feed rate, and edge geometry. The result of this study shows that feed rate has the greatest contribution to cutting coefficient, and cutting edge with larger land angle and blade width is more effective. The results were verified by finite element simulation and cutting experiments. This paper also provide a chip geometry load analysis of round milling insert, the actual chip thickness is expressed by the insert radius, tool rotational angle, insert rotational angle, cutting depth, and feed rate.
摘要 I
Abstract II
誌謝 XI
總目錄 XII
表目錄 XV
圖目錄 XVII
符號表 XX
第一章 緒論 1
1.1 動機與目的 1
1.2 文獻回顧 2
1.2.1 切削係數之文獻回顧 2
1.2.2 銑刀片刃口幾何之文獻回顧 4
1.2.3 實驗設計方法之文獻回顧 5
1.3 研究範疇與架構 5
1.3.1 研究範疇 5
1.3.2 論文架構 6
第二章 銑削力模式與切削係數辨識 7
2.1 銑刀座標系統 7
2.2 角度域總銑削力 10
2.2.1 基本切削函數 10
2.2.2 屑寬密度函數 11
2.2.3 刀刃序列函數 12
2.2.4 角度域總銑削力 13
2.3 頻率域總銑削力 14
2.4 切削係數之辨識 15
第三章 研究原理與實驗方法 17
3.1 有限元素法切削模擬簡介 17
3.1.1 塑性力學的物理模型 17
3.1.2 有限元素模擬軟體簡介 18
3.2 田口品質分析簡介 19
3.2.1 因子水準與品質特性 20
3.2.2 直交表 20
3.2.3 SN比 23
3.2.4 因子回應圖 23
3.2.5 田口變異數分析 24
3.3 反應曲面法簡介 26
3.3.1 Box-Behnken設計簡介 27
3.3.2 迴歸分析 30
3.4 基因演算法簡介 32
3.4.1 基因演算法演算邏輯 33
3.4.2 基因演算法流程說明 33
第四章 銑刀片刃口幾何參數分析 37
4.1 切屑負載幾何分析 37
4.1.1 實際切屑厚度 38
4.1.2 最大切屑厚度 40
4.1.3 平均切屑厚度 41
4.2 模擬參數選定 44
4.3 運用田口方法分析幾何參數對比切削係數之影響 46
4.3.1 田口參數配置與分析 46
4.3.2 田口分析結果討論 48
4.4 比切削係數模型之建立 53
4.5 求取特定加工條件下之理想刃口幾何 57
第五章 切削驗證實驗 58
5.1 實驗設備與配置 58
5.2 模擬驗證實驗 60
5.2.1 時域下模擬與實驗之切削力比較 60
5.2.2 模擬與實驗之切削係數比較 61
5.3 不同刃口設計之實際切削比較 68
第六章 結論與建議 71
6.1 結論 71
6.2 建議 72
參考文獻 73

[1]Advantedge 7.0 User’s Manual, Third Wave Systems, 2015
[2]Bagci, Eyup, and Şeref Aykut. A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6) , The International Journal of Advanced Manufacturing Technology 29.9-10, pp. 940-947, 2006
[3]Bjurka, E. Analyze of insert geometries, wear types and insert life in milling, M.A. thesis, Chalmers university of technology, Sweden, 2011.
[4]Cheng Y. N., Li Z. J., Zhao Y. G., Sun W. J., Study on Impact Disrepair Mathematic Model and Groove Optimization of Cutting Tools for Machining Carbon Structural Steel, Key Engineering Materials, Vols. 375-376, pp. 459-464, 2008.
[5]Fratila, D., & Caizar, C. Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg 3, Journal of Cleaner Production, 19(6), pp. 640-645, 2011.
[6]Fuh, Kuang-Hua, and Hung-Yen Chang. An accuracy model for the peripheral milling of aluminum alloys using response surface design, Journal of materials processing technology 72.1 , pp. 42-47, 1997
[7]Hughes J. I., Sharman A. R., and Ridgwayk, C. “The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity, Proceedings of the Institution of Mechanical Engineers. Part B. Journal of Engineering Manufacture, Vol. 220, No.2, pp.93-107, 2006
[8]Jawaid, A., S. Sharif, and S. Koksal. Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy, Journal of Materials Processing Technology 99.1 pp. 266-274, 2000.
[9]Kelner, V., Grondin, G., Léonard, O., & Moreau, S., “Multi-objective optimization of a fan blade by coupling a genetic algorithm and a parametric flow solver, Paper presented at the 6th International Conference on Evolutionary and Deterministic Methods for Design, Optimisation and Control with Applications to Industrial and Societal Problems (EUROGENÆ2005). Munich, 2005.
[10]Kim, H. G., Sim, J. H., & Kweon, H. J., “Performance evaluation of chip breaker utilizing neural network, Journal of Materials Processing Technology, 209(2), pp. 647-656, 2009.
[11]Koenigsberger, F., and Sabberwal, A. J. P. An Investigation into the Cutting Force Pulsations During Milling Operations, International Journal of Machine Tool Design and Research 1, pp.15-33, 1961
[12]Krishankant, J. T., Bector M., & Kumar R., Application of Taguchi method for optimizing turning process by the effects of machining parameters, International Journal of Engineering and Advanced Technology, 2(1), pp. 263-274, 2012.
[13]Kuo R. Y., & Wang, J. J., Effect of turning insert groove geometry on chip breaking performance, International Forum on Systems and Mechatronics, National Cheng Kung University, Taiwan R.O.C., 2014
[14]Maranhão, C., & Paulo Davim, J., “Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation, Simulation Modelling Practice and Theory, 18(2), pp.139-156, 2010.
[15]Martellotti, M. E. “An Analysis of the Milling Process, Part 2: Down Milling, Transaction of ASME, Vol. 67, pp. 233-251, 1945
[16]Martellotti, M. E. “An Analysis of the Milling Process, Transaction of ASME, Vol. 63, pp.677-700, 1941
[17]Marusich, T. D., Thiele, J. D., & Brand, C. J., “Simulation and analysis of chip breakage in turning processes, Technical Paper Presented in Caterpillar Inc, pp. 1-10, 2001.
[18]Nalbant, M., Altın, A., & Gökkaya, H. “The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 superalloys, Materials and Design, Vol. 28, No.4, pp.1334-1338, 2003.
[19]Patel, K. M., and Joshi S. S. Mechanics of machining of face-milling operation performed using a self-propelled round insert milling cutter. Journal of materials processing technology, 171.1, pp. 68-76, 2006.
[20]Sabberwal, A. J. P. “Chip Section and Cutting Force During the Milling Operation, “Annals of the CIRP 10, pp. 197-203., 1961
[21]Sivanandam, S. N, & Deepa, S. N., Introduction to Genetic Algorithms, Springer Science & Business Media, 2007.
[22]Thiele, J. D., and Melkote, S. N. “Effect of Cutting Edge Geometry and Workpiece Hardness on Surface Generation in the Finish Hard Turning of AISI 52100 Steel, Journal of Materials Processing Technology, Vol. 94, pp.216-226, 1999.
[23]Tlusty, J., and MacNeil, P., “Dynamics of Cutting Forces in End Milling, “CIRP annals, Vol. 24, pp. 21-25, 1975.
[24]Tounsi, N., Vincenti, J., Otho, A., & Elbestawi, M., “From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation, International Journal of Machine Tools and Manufacture, 42(12), pp. 1373-1383, 2002.
[25]Wang, M. Y., Chang, H. Y., “Experimental study of surface roughness in slot end milling AL2014-T6, International Journal of Machine Tools & Manufacture, 44(1), pp. 51-57, 2004
[26]Wang, J. J. “Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, “ ph.D.thesis, School of Mechanical Engineering, Georgia Institute of Technology, April., 1992
[27]Wang, J. J., Liang, S. Y., Book, W. J. Convolution analysis of milling force pulsation, Journal of engineering for industry 116.1, pp. 17-52, 1994.
[28]Yoon, H.-S., Wu, R., Lee, T.-M., & Ahn, S.-H., “Geometric optimization of micro drills using Taguchi methods and response surface methodology, International Journal of Precision Engineering and Manufacturing, 12(5), pp. 871-875, 2011.
[29]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2012
[30]葉怡成,高等實驗計畫法,五南圖書出版股份有限公司,頁66~265,2009
[31]黎正中,穩健設計之品質工程,台北圖書有限公司,1993

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top