(3.236.175.108) 您好!臺灣時間:2021/02/27 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳薇
研究生(外文):Chia-WeiLin
論文名稱:台灣南部地區細懸浮微粒之特徵
論文名稱(外文):Characteristics of PM2.5 in the Ambient Air of Southern Taiwan
指導教授:李文智李文智引用關係
指導教授(外文):Wen-Jhy Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:93
中文關鍵詞:細懸浮微粒特徵季節性比較
外文關鍵詞:Particulate MatterCharacteristicsSeasonal Variation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:334
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
懸浮微粒泛指懸浮在空氣中的微細顆粒,可為液態或氣態。一般而言,細懸浮微粒指粒徑介於 0.005~100 μm 之粒狀物,是造成台灣地區空氣品質不良的主因之一,懸浮微粒之物理性質包括可判定懸浮微粒污染嚴重程度之質量濃度、數量濃度外,亦可依其粒徑大小分類,例如超細懸浮微粒(PM0.1)細懸浮微粒(PM2.5)、懸浮微粒(PM10)、總懸浮微粒(TSP)等性質。化學性質方面,其主要化學成份包括水溶性離子成份、金屬元素成份、碳成份(元素碳及有機碳),亦可被視為其化學指紋特徵。
此研究所監測出的細懸浮微粒資料配合過去研究之相關結果,可提供其細懸浮微粒相關資料使政府決策管理可作為參考之依據。對於跨縣市傳輸之二次衍生型PM2.5部分,建議嘉義市與鄰近縣市如嘉義縣、雲林縣與台南市共組細懸浮微粒資訊共同策略聯盟,目的為達下風縣市出現濃度高值時得以追朔主要貢獻源,而非僅限於轄區內進行原生型PM2.5之控管,以達雲嘉南空品區綜合PM2.5管理之效果。
法規標準之懸浮微粒(PM10)年平均濃度為65µg m-3,而日平均標準為125 µg m-3,空氣污染指標為依據監測資料將當日空氣中懸浮微粒(PM10,及粒徑10微米以下之細微粒)、二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)及臭氧(O3)濃度等數值,以其對人體健康的影響程度,分別換算出不同污染物之副指標值,再以當日各副指標之最大值為該測站當日之空氣污染指標值(PSI)。本研究整理自2010至2014年全台灣各縣市PSI大於100之日數,最高日數皆在高雄市,故政府應更關注管制空氣污染物。
本計畫之目的為了解灣南部地區大氣中懸浮微粒PM2.5之分布特性,利用空氣品質監測站之氣象資料以及採樣資料與分析,探討污染物主要來源及貢獻量,藉以瞭解懸浮微粒對民眾健康危害之關係及影響性。在2010至2014年於嘉義市空氣中PM2.5濃度分別為43,48,39,35及33 µg m-3,這幾年平均直接高於法定年平均值(15µg m-3),高濃度常發生於冬季及春季,其原因可能為鄰近縣市農業廢棄物露天燃燒之影響,以及河道揚塵等影響所致。此外,冬季常有境外長程傳輸之污染源,如大陸沙塵暴。
研究結果顯示,夏季空氣中細縣浮微粒濃度最低,其原因為細懸浮微粒之濃度隨氣溫上升而下降,由於高溫對於大氣邊界層高度有正面影響,進一步對污染物擴散效率有益,空氣中細懸浮微粒濃度則是與雨量有高度負相關,顯示降水對於空氣污染物之去除有正面效益,由此可知氣象條件為影響污染物擴散之重要因子。
Aerosols are defined as suspensions of solid or liquid particles in a gas. Atmospheric aerosol particles have been shown to affect climate, visibility and human health. In particular, particle mass concentrations and size distributions are of crucial importance to the aerosol's impact on human health. It is of great importance to control PM2.5 for both public health and environment. This study focused on two parts: the first is to analyze both PM10 and PM2.5 data from 2010 to 2014 in Taiwan and the second is for doing the sampling and analysis for atmospheric PM2.5 aerosols to characterize the contents of heavy metals, carbon (EC and OC) and ions in Chiayi City, Taiwan.
The average PM10 concentrations in ambient air of Chiayi City from 2010 to 2014 reveals that only one measurement in 2014 merited the annual PM10 concentration (65µg m-3) and daily PM10 concentration (125 µg m-3) standards of National regulated standard (NRS). The daily air pollution index (PSI) indicatory of the target contaminants (PM10, SO2, NO2, CO and O3) levels. This study also monitored the number of days of PM10 as indicator when PSI 〉 100 in each city or county of Taiwan. The data collected from Taiwan EPA during the periods from 2010 to 2014. Kaohsiung City has the highest episode days in the indicator of PM10. It means that the air qualities in the highly potential hazardous areas need more attention.
Additionally, The average PM2.5 concentration in ambient air of Chiayi City from 2010 to 2014 were 43, 48, 39, 35 and 33 µg m-3, respectively, and averaged 39.6 µg m-3. They were all higher than the PM2.5 regulated standard of annual average. The reason of high PM2.5 might be primarily due to the emissions of agricultural waste open burning from the vicinity - Chiayi County and fugitive emissions of re-suspension particulate from the dusts of river or uncover lands.
Furthermore, the long-range transport from China, other Cities or Counties might also make a great contribution on high PM2.5 concentrations in the ambient air. When the aerosol particle mass concentration ratios were analyzed, the higher PM2.5/PM10 ratios indicated that there are more human activities and photochemical reaction of suspended fine particles in the atmosphere of the study regions. From the results of the sulfate contribution proportion, I (2.191 and 2.695) and nitrate contribution proportion, J (0.860 and 0.806), the PM concentration in Chiayi City can be effectively controlled by controlling the nitrate levels in the atmosphere.
The PM concentrations in the atmosphere of sampling sites were pooled together, compared and discussed for seasonal variation analysis in this study. The values represented the atmospheric PM2.5 concentration around Chiayi city in the period of July 2013 to November 2014. The seasonal variation is very significant whereby the critical low values occurred in summer and spring. The precipitation from May to August during 2013 and 2014 were much higher than other years. Therefore, the ambient particulate matter concentrations in this period were scavenged by rainfall. The dispersion of air pollutants in the atmosphere is affected primarily by the meteorological conditions, such as wind speed, rainfall intensity and the atmospheric stability.
Abstract I
摘要 III
致謝 V
List of Contents VI
List of Tables VII
List of Figures IX
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Emission Sources and Characteristics of Particulate Matter (PM) 3
2.1.1 Sources and Formation of Particulate Matter 3
2.1.2 Particle Size Distributions 8
2.2 Major Chemical Components in Particulate Matter (PM) 11
2.3 Health Effects of Particulate Matter (PM) 18
Chapter 3 Material and Methods 22
3.1 Sampling Design 22
3.1.1 Selection of the Ambient Air Sampling Sites 22
3.1.2 Sampling Period 24
3.1.3 Meteorological data 25
3.2 Sampling and Analysis of Particulate Matter (PM) 35
3.2.1 Sampling of Particulate Matter (PM) from Ambient Air 35
3.2.2 Sample Analysis 38
Chapter 4 Results and Discussion 39
4.1 Archive of PM Concentration in Taiwan 39
4.2 Seasonal variation of PM Concentration 54
4.3 The results of sampling in the ambient air 59
Chapter 5 Conclusions and Suggestions 86
5.1 Conclusions 86
5.2 Suggestions 89
Reference 90
Biswas, S. (2008). Investigation of Physico-chemical Characteristics of Particulate Matter from Vehicular Sources: ProQuest.
Buser, M., Parnell Jr, C., Shaw, B., & Lacey, R. (2007). Particulate matter sampler errors due to the interaction of particle size and sampler performance characteristics: Ambient PM10 samplers. Trans. ASABE, 50(1), 229-240.
Castleman, B. I., & Ziem, G. E. (1994). American conference of governmental industrial hygienists: low threshold of credibility. IND MED, 26(1), 133-143.
Chow, J. C., & Watson, J. G. (1998). Guideline on speciated particulate monitoring. Report prepared for US Environmental Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV.
Chow, J. C., Watson, J. G., Houck, J. E., Pritchett, L. C., Fred Rogers, C., Frazier, C. A., . . . Ball, B. M. (1994). A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmos Environ, 28(21), 3463-3481.
Chow, J. C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., . . . Magliano, K. (1996). Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ, 30(12), 2079-2112.
Dejmek, J., Selevan, S. G., Benes, I., Solanský, I., & Srám, R. J. (1999). Fetal growth and maternal exposure to particulate matter during pregnancy. Environ Health Perspectives, 107(6), 475.
Delfino, R. J., Sioutas, C., & Malik, S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspectives, 934-946.
Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annu Rev of Publ Health, 15(1), 107-132.
Eglinton, T., Eglinton, G., Dupont, L., Sholkovitz, E., Montluçon, D., & Reddy, C. (2002). Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochemistry, Geophysics, Geosystems, 3(8), 1-27.
Europe, W. H. O. R. O. f., & Organization, W. H. (2006). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide: World Health Organization.
Fung, D. C., Zhang, Q., Hinds, W. C., & Zhu, Y. (2013). Particle Concentration on Freeways: Affecting Factors and a Simple Model Development. Aerosol Air Qual Res, 13(6), 1693-1701.
Goyer, R. A., & Clarkson, T. W. (1996). Toxic effects of metals. Casarett & Doull’s Toxicology. The Basic Science of Poisons, Fifth Edition, Klaassen, CD [Ed]. McGraw-Hill Health Professions Division, ISBN, 71054766.
Hodan, W. M., & Barnard, W. R. (2004). Evaluating the Contribution of PM2. 5 Precursor Gases and Re-entrained Road Emissions to Mobile Source PM2. 5 Particulate Matter Emissions. MACTEC Federal Programs. Research Triangle Park, NC. MACTEC Under Contract to the Federal Highway Administration, 53.
Holmgren, H. (2006). Size-resolved volatility of urban aerosol.
Homolya, J., & Rice, J. (1999). Particulate Matter (PM2.5) Speciation Guidance Final Draft. U.S. Environ Protection Agency.
Janssen, N. A., Hoek, G., Brunekreef, B., Harssema, H., Menswik, I., & Zuidhof, A. (1998). Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Adv Chem Ser, 147(6), 537-547.
John, W., Wall, S. M., Ondo, J. L., & Winklmayr, W. (1990). Modes in the size distributions of atmospheric inorganic aerosol. Atmos Environ A-Gen, 24(9), 2349-2359.
Keywood, M., Ayers, G., Gras, J., Gillett, R., & Cohen, D. (1999). Relationships between size segregated mass concentration data and ultrafine particle number concentrations in urban areas. Atmos Environ, 33(18), 2907-2913.
Klingenberg, H., & Winneke, H. (1990). Studies on health effects of automotive exhaust emissions how dangerous are diesel emissions? Sci Total Environ, 93, 95-105.
Kurt Straif, A. C., and Jonathan Samet. (2013). IARC: Outdoor air pollution a leading environmental cause of cancer deaths. Air Pollution and Cancer, 161.
Lundgren, D. A., Hlaing, D. N., Rich, T. A., & Marple, V. A. (1996). PM10/PM2. 5/PM1 data from a trichotomous sampler. Aerosol Sci Tech, 25(3), 353-357.
Meng, Q. Y., Turpin, B. J., Korn, L., Weisel, C. P., Morandi, M., Colome, S., . . . Winer, A. (2004). Influence of ambient (outdoor) sources on residential indoor and personal PM2. 5 concentrations: analyses of RIOPA data. Exposure Sci and Environ Epidemiology, 15(1), 17-28.
Miranda, A. I., Relvas, H., ULB, C. B., Douros, J., Fragkou, L., LWA, L. W., . . . Clapier, A. (2013). WP2: Review and gaps identification in air quality and health assessment methodologies at regional and local scale University of Aveiro D2. 7 Summary review of air quality and health assessment methods.
Monn, C., Fuchs, A., Högger, D., Junker, M., Kogelschatz, D., Roth, N., & Wanner, H.-U. (1997). Particulate matter less than 10 μm and fine particles less than 2.5 μm : relationships between indoor, outdoor and personal concentrations. Sci Total Environ, 208(1), 15-21.
Morawska, L., & Zhang, J. (2002). Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere, 49(9), 1045-1058.
NARSTO. (2003). Particulate matter science for policy makers: a NARSTO assessment: NARSTO Management Coordination Office.
Pauwels, R. A., Buist, A. S., Calverley, P. M., Jenkins, C. R., & Hurd, S. S. (2012). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 163(5).
Pekkanen, J., Peters, A., Hoek, G., Tiittanen, P., Brunekreef, B., de Hartog, J., . . . Lanki, T. (2002). Particulate Air Pollution and Risk of ST-Segment Depression During Repeated Submaximal Exercise Tests Among Subjects With Coronary Heart Disease The Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) Study. Circulation, 106(8), 933-938.
Pilinis, C. S., John H. (1987). Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmos Environ, 21(11), 2453-2466.
Pope, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol, 7(1), 1-18.
Pope III, C. A. (2000). Review: epidemiological basis for particulate air pollution health standards. Aerosol Sci Tech, 32(1), 4-14.
Raga, G., Baumgardner, D., Castro, T., Martınez-Arroyo, A., & Navarro-González, R. (2001). Mexico City air quality: a qualitative review of gas and aerosol measurements (1960–2000). Atmos Environ, 35(23), 4041-4058.
Saldiva, P. H., Clarke, R. W., Coull, B. A., Stearns, R. C., Lawrence, J., Murthy, G. K., . . . Tsuda, A. (2002). Lung inflammation induced by concentrated ambient air particles is related to particle composition. American journal of respiratory and critical care medicine, 165(12), 1610-1617.
Saxena, P., & Hildemann, L. M. (1996). Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Atmos Chem, 24(1), 57-109.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ, 30(22), 3837-3855.
Schlesinger, R. B. (2007). The health impact of common inorganic components of fine particulate matter (PM2. 5) in ambient air: a critical review. Inhal Toxicol, 19(10), 811-832.
Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F., Shindell, D. T., . . . Folberth, G. (2013). Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 8(3), 034005.
Stelson, A., & Seinfeld, J. (1982). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos Environ, 16(5), 983-992.
Sudheer, A. K., Rengarajan, R., Deka, D., Bhushan, R., Singh, S. K., & Aslam, M. Y. Diurnal and Seasonal Characteristics of Aerosol Ionic Constituents over an Urban Location in Western India: Secondary Aerosol Formation and Meteorological Influence.
Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ, 400(1), 270-282.
Tolocka, M. P., Solomon, P. A., Mitchell, W., Norris, G. A., Gemmill, D. B., Wiener, R. W., . . . Rice, J. (2001). East versus west in the US: chemical characteristics of PM2. 5 during the winter of 1999. Aerosol Sci] Tech, 34(1), 88-96.
Tuch, T., Brand, P., Wichmann, H., & Heyder, J. (1997). Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany. Atmos Environ, 31(24), 4193-4197.
Willeke, K., & Baron, P. A. (1993). Aerosol measurement. Principles Techniques and Applications. Van.
Wilson, W. E., & Suh, H. H. (1997). Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. Air and Waste Management Association, 47(12), 1238-1249.
Yeh, H.-C., Cuddihy, R. G., Phalen, R. F., & Chang, I.-Y. (1996). Comparisons of calculated respiratory tract deposition of particles based on the proposed NCRP model and the new ICRP66 model. Aerosol Sci Tech, 25(2), 134-140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔