|
1.Backonja, M., et al., Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA, 1998. 280(21): p. 1831-6. 2.Schmader, K.E., Epidemiology and impact on quality of life of postherpetic neuralgia and painful diabetic neuropathy. Clin J Pain, 2002. 18(6): p. 350-4. 3.Benbow, S.J., M.E. Wallymahmed, and I.A. MacFarlane, Diabetic peripheral neuropathy and quality of life. Qjm, 1998. 91(11): p. 733-7. 4.Morrow, T.J., Animal models of painful diabetic neuropathy: the STZ rat model. Curr Protoc Neurosci, 2004. Chapter 9: p. Unit 9.18. 5.Calcutt, N.A., J.D. Freshwater, and A.P. Mizisin, Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia, 2004. 47(4): p. 718-24. 6.Kim, S.H., J.K. Kwon, and Y.B. Kwon, Pain modality and spinal glia expression by streptozotocin induced diabetic peripheral neuropathy in rats. Lab Anim Res, 2012. 28(2): p. 131-6. 7.McQuay, H.J., et al., Systematic review of outpatient services for chronic pain control. Health Technol Assess, 1997. 1(6): p. i-iv, 1-135. 8.Kilinc, M., et al., Effects of transcutaneous electrical nerve stimulation in patients with peripheral and central neuropathic pain. J Rehabil Med, 2014. 46(5): p. 454-60. 9.Forst, T., et al., Impact of low frequency transcutaneous electrical nerve stimulation on symptomatic diabetic neuropathy using the new Salutaris device. Diabetes Nutr Metab, 2004. 17(3): p. 163-8. 10.Kumar, D. and H.J. Marshall, Diabetic peripheral neuropathy: amelioration of pain with transcutaneous electrostimulation. Diabetes Care, 1997. 20(11): p. 1702-5. 11.Kumar, D., et al., Diabetic peripheral neuropathy. Effectiveness of electrotherapy and amitriptyline for symptomatic relief. Diabetes Care, 1998. 21(8): p. 1322-5. 12.Moharic, M. and H. Burger, Effect of transcutaneous electrical nerve stimulation on sensation thresholds in patients with painful diabetic neuropathy: an observational study. Int J Rehabil Res, 2010. 33(3): p. 211-7. 13.Somers, D.L. and F.R. Clemente, Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats. J Pain, 2009. 10(2): p. 221-9. 14.DeSantana, J.M., et al., Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep, 2008. 10(6): p. 492-9. 15.Melzack, R. and P.D. Wall, Pain mechanisms: a new theory. Science, 1965. 150(3699): p. 971-9. 16.Kumar, V.N. and J.B. Redford, Transcutaneous nerve stimulation in rheumatoid arthritis. Arch Phys Med Rehabil, 1982. 63(12): p. 595-6. 17.Garrison, D.W. and R.D. Foreman, Decreased activity of spontaneous and noxiously evoked dorsal horn cells during transcutaneous electrical nerve stimulation (TENS). Pain, 1994. 58(3): p. 309-15. 18.Hollman, J.E. and B.J. Morgan, Effect of transcutaneous electrical nerve stimulation on the pressor response to static handgrip exercise. Phys Ther, 1997. 77(1): p. 28-36. 19.Yarnitsky, D. and J.L. Ochoa, Studies of heat pain sensation in man: perception thresholds, rate of stimulus rise and reaction time. Pain, 1990. 40(1): p. 85-91. 20.Magerl, W., et al., Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain, 2001. 124(Pt 9): p. 1754-64. 21.G, D.E.D., Pain relief with interferential therapy. Aust J Physiother, 1982. 28(3): p. 14-8. 22.Sluka, K.A., et al., Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther, 1999. 289(2): p. 840-6. 23.Matsuo, H., et al., Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain, 2014. 155(9): p. 1888-901. 24.Skundric, D.S. and R.P. Lisak, Role of neuropoietic cytokines in development and progression of diabetic polyneuropathy: from glucose metabolism to neurodegeneration. Exp Diabesity Res, 2003. 4(4): p. 303-12. 25.Purwata, T.E., High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res, 2011. 4: p. 169-75. 26.Yan, J.E., et al., Streptozotocin-induced diabetic hyperalgesia in rats is associated with upregulation of Toll-like receptor 4 expression. Neurosci Lett, 2012. 526(1): p. 54-8. 27.Saleh, A., et al., Tumor necrosis factor-alpha elevates neurite outgrowth through an NF-kappaB-dependent pathway in cultured adult sensory neurons: Diminished expression in diabetes may contribute to sensory neuropathy. Brain Res, 2011. 1423: p. 87-95. 28.Li, Y., et al., Curcumin attenuates diabetic neuropathic pain by downregulating TNF-alpha in a rat model. Int J Med Sci, 2013. 10(4): p. 377-81. 29.Bazzoni, F. and B. Beutler, The tumor necrosis factor ligand and receptor families. N Engl J Med, 1996. 334(26): p. 1717-25. 30.Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501. 31.Rauert, H., et al., Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem, 2010. 285(10): p. 7394-404. 32.Schmeichel, A.M., J.D. Schmelzer, and P.A. Low, Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes, 2003. 52(1): p. 165-71. 33.Montgomery, S.L. and W.J. Bowers, Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol, 2012. 7(1): p. 42-59. 34.Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501. 35.Bellacosa, A., et al., Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res, 2005. 94: p. 29-86. 36.Yang, Z.Z., et al., Physiological functions of protein kinase B/Akt. Biochem Soc Trans, 2004. 32(Pt 2): p. 350-4. 37.Downward, J., PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol, 2004. 15(2): p. 177-82. 38.Sugimoto, K., et al., Early changes in insulin receptor signaling and pain sensation in streptozotocin-induced diabetic neuropathy in rats. J Pain, 2008. 9(3): p. 237-45. 39.Yang, C., et al., Isoflurane anesthesia aggravates cognitive impairment in streptozotocin-induced diabetic rats. Int J Clin Exp Med, 2014. 7(4): p. 903-10. 40.Suehiro, K., et al., Relationship between noradrenaline release in the locus coeruleus and antiallodynic efficacy of analgesics in rats with painful diabetic neuropathy. Life Sci, 2013. 92(23): p. 1138-44. 41.Otto, K.J., et al., Insulin implants prevent the temporal development of mechanical allodynia and opioid hyposensitivity for 24-wks in streptozotocin (STZ)-diabetic Wistar rats. Pain Med, 2011. 12(5): p. 782-93. 42.Zhao, W.C., et al., Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci Lett, 2014. 560: p. 81-5. 43.Nam, J.S., et al., Effects of nefopam on streptozotocin-induced diabetic neuropathic pain in rats. Korean J Pain, 2014. 27(4): p. 326-33. 44.Kinoshita, J., et al., Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia. Mol Pain, 2013. 9: p. 59. 45.Li, W., P. Wang, and H. Li, Upregulation of glutamatergic transmission in anterior cingulate cortex in the diabetic rats with neuropathic pain. Neurosci Lett, 2014. 568: p. 29-34. 46.Banafshe, H.R., et al., Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur J Pharmacol, 2014. 723: p. 202-6. 47.Hong, S., et al., The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy. J Neurochem, 2008. 105(4): p. 1212-22. 48.Huang, T.J., et al., Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol, 2005. 194(1): p. 279-83. 49.Huang, Y., et al., The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy. Neurochem Int, 2014. 75: p. 112-9. 50.Chen, Y.W., et al., Treadmill Training Combined with Insulin Suppresses Diabetic Nerve Pain and Cytokines in Rat Sciatic Nerve. Anesth Analg, 2015. 51.Chen, Y.W., et al., Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth Analg, 2013. 116(2): p. 482-90. 52.Wang, D., et al., Assessment of diabetic peripheral neuropathy in streptozotocin-induced diabetic rats with magnetic resonance imaging. Eur Radiol, 2015. 25(2): p. 463-71. 53.Ingaramo, P.I., et al., Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Mol Immunol, 2011. 48(12-13): p. 1397-407. 54.van Horssen, R., T.L. Ten Hagen, and A.M. Eggermont, TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist, 2006. 11(4): p. 397-408. 55.Devin, A., et al., The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity, 2000. 12(4): p. 419-29. 56.Liu, Z.G., et al., Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell, 1996. 87(3): p. 565-76. 57.Schwenzer, R., et al., The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem, 1999. 274(27): p. 19368-74. 58.Wang, C.Y., et al., NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998. 281(5383): p. 1680-3. 59.Chu, Z.L., et al., Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10057-62. 60.Kreuz, S., et al., NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol, 2001. 21(12): p. 3964-73. 61.Lee, H.H., et al., NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9136-41. 62.Fotin-Mleczek, M., et al., Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci, 2002. 115(Pt 13): p. 2757-70. 63.Kamiya, H., W. Zhangm, and A.A. Sima, Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute type 1 diabetic BB/Wor rats. Diabetes, 2005. 54(11): p. 3288-95. 64.Stenberg, L., et al., Expression of activating transcription factor 3 (ATF 3) and caspase 3 in Schwann cells and axonal outgrowth after sciatic nerve repair in diabetic BB rats. Neurosci Lett, 2012. 515(1): p. 34-8. 65.Thorburn, A., Death receptor-induced cell killing. Cell Signal, 2004. 16(2): p. 139-44. 66.Schneider, P. and J. Tschopp, Apoptosis induced by death receptors. Pharm Acta Helv, 2000. 74(2-3): p. 281-6. 67.Ware, C.F., S. VanArsdale, and T.L. VanArsdale, Apoptosis mediated by the TNF-related cytokine and receptor families. J Cell Biochem, 1996. 60(1): p. 47-55. 68.Costa, G.N., et al., Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Mol Cell Neurosci, 2012. 50(1): p. 113-23. 69.Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 2005. 4(12): p. 988-1004. 70.Nam, S.Y., et al., Akt/PKB activation in gastric carcinomas correlates with clinicopathologic variables and prognosis. Apmis, 2003. 111(12): p. 1105-13. 71.Jiang, Y., et al., Diabetes induces changes in ILK, PINCH and components of related pathways in the spinal cord of rats. Brain Res, 2010. 1332: p. 100-9. 72.Yu, J., et al., Regulation of the p85/p110 phosphatidylinositol 3'-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol, 1998. 18(3): p. 1379-87. 73.Rodriguez-Viciana, P., et al., Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 1994. 370(6490): p. 527-32. 74.Kodaki, T., et al., The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol, 1994. 4(9): p. 798-806. 75.Baptista, A.F., et al., High- and low-frequency transcutaneous electrical nerve stimulation delay sciatic nerve regeneration after crush lesion in the mouse. J Peripher Nerv Syst, 2008. 13(1): p. 71-80.
|