跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:巫昌哲
研究生(外文):Chang-Che Wu
論文名稱:以氧化鋅奈米粒與抗癌藥物共沉積方式製作氧化鋅紙
論文名稱(外文):Fabrication of ZnO Paper by Co-Deposition of ZnO Nanoparticles and Anti-Cancer Medicines
指導教授:吳幼麟
指導教授(外文):You-Lin Wu
口試委員:胡振國吳幼麟林錦正徐中平
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:氧化鋅奈米顆粒抗癌藥物之氧化鋅紙化學還原法抗癌藥物
外文關鍵詞:zinc oxide nano particlesanticancer drugs of zinc oxide paperchemical reductionanti-cancer drugs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
將氧化鋅奈米粒或奈米聚合體沉積在纖維紙上所形成的氧化鋅紙被證實可用來當作抗菌檢測的載台。由於紙基板是無毒且能生物分解的,因此氧化鋅紙非常適合應用在生物醫學的領域。所以,我們希望能將氧化鋅紙在生醫檢測的應用上更加以擴張。在本論文中,我們試圖將抗癌藥物Iressa及Staurosporine摻入成長氧化鋅的溶液中,在氧化鋅以化學還原的方式沉積在纖維紙上的同時,也將抗癌藥物沉積在纖維紙上,形成含有抗癌藥物氧化鋅紙。
我們以化學還原的方式將醋酸鋅變成氧化鋅奈米粒沉積在纖維紙基板上。抗癌藥物的部分則選用了Iressa及Staurosporine兩種。為了確認抗癌藥物確實有沉積在紙基板上,我們先以掃瞄式電子顯微鏡(Scanning Electron Microscopy,SEM)確定了氧化鋅及抗癌藥物有沉積於纖維紙上,我們再分別以能量色散X射線光譜儀(Energy-dispersive X-ray spectroscope,EDX)的分析及傅立葉轉換紅外線光譜儀(Fourier Transform Infrared spectroscopy,FTIR)分析來鑑定氧化鋅紙上抗癌藥物化合物的鍵結與含量。
在製備含有抗癌藥物的氧化鋅紙過程中,本論文也提出在開始沉積時利用UV光分別照射5分鐘及10分鐘,在分別以30小時50小時72小時來做沉積,觀察照射UV光是否有利於抗癌藥物的沉積。另外,由分子吸收紅外線光譜來鑑定抗癌藥物化合物的存在與含量。
由實驗結果我們發現,共沉積時所使用的水溶液的量以及UV光照射的時間均會影響氧化鋅紙上抗癌藥物的鍵結。對在100ml的水溶液中加入250 M抗癌藥物Iressa進行共沉積而言,我們發現C-Cl, C-F鍵的強度均會隨著共沉積的時間加長而增加。而原本較不受共沉積時間影響的N-H鍵則在照射UV光後亦隨共沉積時間增加而增加。但當水溶液的量增加成200 ml時,UV光強化鍵結的效果就變差了。因為共沉積溶液被稀釋了的關係,N-H鍵卻會隨共沉積時間增加而降低,即使經過UV光照射仍無法提升,這應該是N-H的波長範圍無法吸收UV光所致。我們對抗癌藥物100 nM Staurosporine而言,我們則發現共沉積的氧化鋅紙上之N-H鍵亦不太受共沉積的時間影響。在經過 UV光照射後,N-H鍵強度在共沉積時間為72小時時會有明顯增加。但當抗癌藥物Staurosporiney增加為 200 nM時,但我們觀察到C-H鍵在UV照射後的確隨共沉積的時間增加而增加。由實驗數據的結果,我們確認了在適當的成長條件下,化學還原法可以將氧化鋅與抗癌藥物共沉積成長於紙張上。

Deposition of ZnO nanoparticles or nanoclusters on paper substrate (so called ZnO paper) has been confirmed to be useful as a platform for anti-bacterial testing. Since paper substrate in nontoxic and biodegradable, ZnO paper is quite suitable for being used in the biomedical area. Therefore, the purpose of this work is to expand the applications of ZnO paper in the area of biomedical teting. In this thesis, we try to incorporate anticancer drugs into the solution for the zinc oxide nanoparticles growth such that anti-cancer drugs can be co-deposited onto the paper substrate simultaneously while depositing the zinc oxide nanopartilcles. As a result, anti-cancer drugs-containing ZnO paper will be obtained.
In this work, the zinc oxide nanoparticles were obtained by using chemical reduction form the zinc acetate acide. Two anti-cancer drugs, Iressa and Staurosporine, were selected for the co-deposition with zinc oxide nanoparticles on cellulose paper. In order to confirm that the anti-cancer drugs do have been deposited onto the paper substrate, we used scanning electron microscope (SEM) for the surface morphology check making sure that the ZnO nanoparticles as well as anti-cancer drugs were deposited onto the cellulose paper. Enenery-Dispersive X-ray Sepectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) were then used to check the bondings and deposited amount of ZnO nanoparticles and anti-cancer drugs.
UV light illumination during the fist 5 and 10 min of the co-deposition process is proposed to be in favor of the loading of anti-cancer drugs on the ZnO nanoparticles. In the work, we checked the effet of UV illumination on the anti-cancer drugs loading for the ZnO nanoparticles deposited for 30h, 50 h and 72 h, respectively.
From our experimental results, it isfound that both the co-deposition time of the ZnO paper and the amount of water during co-deposition affect the bonding of the co-deposited ZnO and anti-cancer drugs. For co-deposition of 250M Iressa in 100ml water, it is observed that the C-Cl and C-F bonds icrease with increasing co-deposition time, while the N-H bonds do not affect much by the co-deposition time. However, after being subjected to UV illumination, the N-H bonds also increases as co-depositon time. If the amount of co-deposition water increases to 200 ml, the effect of UV illumination on the N-H bonding enhance is weakened further and not been able to increase even after UV illumination due to the solution is diluted. For co-deposition of 100nM Staurosporine in 1 ml water, it is found that the intensity of N-H bonds is almost independent of the co-deposition time, but inreases rapidly at a co-depositon time of 72 h after UV illumination. We clearly observed that the intensity of C-H bonds increases with the co-deposition time after UV illumination when the amount of Staurosporine is increased to 200 nM. In conclusion, we confirmed that the chemical reduction method is effective to co-deposit the ZnO nanoparticles and anti-cancer drugs onto the cellulose paper as long as the growth condition is correct.
目次
致謝----------------------------------------------------------------------------------------------------------------------------------------------I
摘要---------------------------------------------------------------------------------------------------------------------------------------------II
Abstract-----------------------------------------------------------------------------------------------------------------------------------------IV
目次---------------------------------------------------------------------------------------------------------------------------------------------VI
圖目次-----------------------------------------------------------------------------------------------------------------------------------------VIII
表目次------------------------------------------------------------------------------------------------------------------------------------------XIV
第一章:緒論
1.1前言-------------------------------------------------------------------------------------------------------------------------------------------1
1.2研究動機及目的----------------------------------------------------------------------------------------------------------------------------------2
1.3論文架構---------------------------------------------------------------------------------------------------------------------------------------4
第二章:材料簡介與實驗理論
2.1 氧化鋅簡介------------------------------------------------------------------------------------------------------------------------------------5
2.2 抗癌藥物IRESSA簡介----------------------------------------------------------------------------------------------------------------------------6
2.3 抗癌藥物Staurosporine簡介---------------------------------------------------------------------------------------------------------------------6
2.4 纖維紙之簡介----------------------------------------------------------------------------------------------------------------------------------7
2.5 奈米粒子之製備--------------------------------------------------------------------------------------------------------------------------------7
2.6 實驗藥品種類與規格----------------------------------------------------------------------------------------------------------------------------9
第三章 儀器介紹與實驗流程
3.1 儀器與裝置-----------------------------------------------------------------------------------------------------------------------------------16
3.1.1掃描式電子顯微鏡-----------------------------------------------------------------------------------------------------------------------------16
3.1.2傅立葉轉換紅外線光譜儀(FTIR)------------------------------------------------------------------------------------------------------------------16
3.1.3手持式UV機----------------------------------------------------------------------------------------------------------------------------------17
3.2 實驗步驟-------------------------------------------------------------------------------------------------------------------------------------17
3.2.1 Iressa氧化鋅紙製備-------------------------------------------------------------------------------------------------------------------------17
3.2.2 Staurosporine氧化鋅紙---------------------------------------------------------------------------------------------------------------------18
第四章 結果與討論
4.1 表面形貌分析----------------------------------------------------------------------------------------------------------------------------------23
4.2 Iressa濃度為250M之形貌分析-------------------------------------------------------------------------------------------------------------------23
4.3 Staurosporine氧化鋅紙之形貌分析---------------------------------------------------------------------------------------------------------------24
4.4 FTIR成分分析---------------------------------------------------------------------------------------------------------------------------------25
4.4.1 Iressa氧化鋅紙分析--------------------------------------------------------------------------------------------------------------------------25
4.4.2 Staurosporine氧化鋅紙分析-------------------------------------------------------------------------------------------------------------------26
第五章 結論與未來展望-----------------------------------------------------------------------------------------------------------------------------59
參考文獻
英文部分-----------------------------------------------------------------------------------------------------------------------------------------60
中文部分-----------------------------------------------------------------------------------------------------------------------------------------66

圖目次

圖2-1 ZnO晶體結構示意圖--------------------------------------------------------------------------------------------------------------------------12
圖2-2 ZnO相關的缺陷能帶圖------------------------------------------------------------------------------------------------------------------------12
圖2-3 Iressa分子結構圖---------------------------------------------------------------------------------------------------------------------------13
圖2-4 Staursporine分子結構圖---------------------------------------------------------------------------------------------------------------------13
圖2-5 纖維素之分子式-----------------------------------------------------------------------------------------------------------------------------14
圖2-6 纖維素之分子結構---------------------------------------------------------------------------------------------------------------------------14
圖2-7 溶膠-凝膠法製備奈米粉體的基本過程------------------------------------------------------------------------------------------------------------15
圖2-8 微乳液法製備流程----------------------------------------------------------------------------------------------------------------------------15
圖3-1 SEM結構圖---------------------------------------------------------------------------------------------------------------------------------20
圖3-2 Iressa氧化鋅紙流程圖------------------------------------------------------------------------------------------------------------------------21
圖3-3 Iressa氧化鋅紙示意圖------------------------------------------------------------------------------------------------------------------------21
圖3-4 Staurosporine氧化鋅紙流程圖-----------------------------------------------------------------------------------------------------------------22
圖3-5 Staurosporine氧化鋅紙示意圖-----------------------------------------------------------------------------------------------------------------22
圖4-1未沉積纖維紙SEM影像--------------------------------------------------------------------------------------------------------------------------28
圖4-2 Iressa之FTIR量測結果------------------------------------------------------------------------------------------------------------------------29
圖4-3 Staurosporine之FTIR量測結果-----------------------------------------------------------------------------------------------------------------29
圖4-4於100ml水溶液中加入Iressa 250M進行不同時間沉積之SEM影像---------------------------------------------------------------------------------------30
圖4-5於100ml水溶液加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之SEM影像---------------------------------------------------------------------------30
圖4-6 100ml水溶液中加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之SEM影像-------------------------------------------------------------------------31
圖4-7於200ml水溶液中加入Iressa 250M進行不同時間沉積之SEM影像---------------------------------------------------------------------------------------31
圖4-8於200ml水溶液中加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之SEM影像-------------------------------------------------------------------------32
圖4-9於200ml水溶液中加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之SEM影像------------------------------------------------------------------------32
圖4-10於300ml水溶液中加入Iressa 250M進行不同時間沉積之SEM影像--------------------------------------------------------------------------------------33
圖4-11於300ml水溶液加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之SEM影像------------------------------------------------------------33
圖4-12於300ml水溶液加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之SEM影像-----------------------------------------------------------34
圖4-13於100ml水溶液加入Iressa 250M進行不同時間沉積之EDX分析結果----------------------------------------------------------------------35
圖4-14於100ml水溶液中加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之EDX分析結果------------------------------------------------------35
圖4-15於100ml 水溶液加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之EDX分析結果------------------------------------------------------36
圖4-16於200ml水溶液中加入Iressa 250M進行不同時間沉積之EDX分析結果--------------------------------------------------------------------36
圖4-17於水溶液中加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之EDX分析結果-----------------------------------------------------------37
圖4-18 於水溶液中加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之EDX分析結果---------------------------------------------------------37
圖4-19於300ml水溶液中加入Iressa 250M進行不同時間沉積之EDX分析結果--------------------------------------------------------------------38
圖4-20於300ml水溶液加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之EDX分析結果--------------------------------------------------------38
圖4-21於300ml水溶液加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之EDX分析結果-------------------------------------------------------39
圖4-22於100ml水溶液中加入Iressa 250M進行不同時間沉積之FTIR分析結果-------------------------------------------------------------------40
圖4-23於100ml水溶液中加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之FTIR分析結果-----------------------------------------------------40
圖4-24於100ml水溶液中加入Iressa 250M進行不同時間沉積並照射UV光10分鐘之FTIR分析結果----------------------------------------------------41
圖4-25於200ml水溶液中加入Iressa 250M進行不同時間沉積之FTIR分析結果-------------------------------------------------------------------41
圖4-26於200ml水溶液加入Iressa 250M進行不同時間沉積並照射UV光5分鐘之FTIR分析結果-------------------------------------------------------42
圖4-27於200ml水溶液中加入Iressa 250uM進行不同時間沉積並照射UV光10分鐘之FTIR分析結果----------------------------------------------------42
圖4-28於300ml水溶液中加入Iressa 250uM進行不同時間沉積之FTIR分析結果-------------------------------------------------------------------43
圖4-29於300ml水溶液中加入Iressa 250uM進行不同時間沉積並照射UV光5分鐘之FTIR分析結果-----------------------------------------------------43
圖4-30於300ml水溶液中加入Iressa 250uM進行不同時間沉積並照射UV光10分鐘之FTIR分析結果----------------------------------------------------44
圖4-31於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積之SEM影像------------------------------------------------------------------45
圖4-32於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積並照射UV光5分鐘之SEM影響-----------------------------------------------------45
圖4-33於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積並照射UV光10分鐘之SEM影像----------------------------------------------------46
圖4-34於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積之SEM影像------------------------------------------------------------------46
圖4-35於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積並照射UV光5分鐘之SEM影像-----------------------------------------------------47
圖4-36於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積並照射UV光10分鐘之SEM影像----------------------------------------------------47
圖4-37圖4-37於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積之EDX分析結果---------------------------------------------------------48
圖4-38於 1ml水溶液中加入Staurosporine 100nM進行不同時間沉積並照射UV光5分鐘之EDX分析結果------------------------------------------------48
圖4-39於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積並照射UV光10分鐘之EDX結果----------------------------------------------------49
圖4-40於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積之EDX分析結果---------------------------------------------------------------49
圖4-41於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積並照射UV光5分鐘之EDX分析結果-------------------------------------------------50
圖4-42於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積並照射UV光10分鐘之EDX分析結果------------------------------------------------50
圖4-43於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積之FTIR分析結果--------------------------------------------------------------51
圖4-44 1ml水溶液中加入Staurosporine 100nM進行不同時間沉積並照射UV光5分鐘之FTIR分析結果-------------------------------------------------51
圖4-45於1ml水溶液中加入Staurosporine 100nM進行不同時間沉積並照射UV光10分鐘之FTIR分析結果-----------------------------------------------52
圖4-46於1ml水溶液中加入Staurosporine 200nM進行沉積之FTIR分析結果---------------------------------------------------------------------52
圖4-47於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積並照射UV光5分鐘之FTIR分析結果------------------------------------------------53
圖4-48於1ml水溶液中加入Staurosporine 200nM進行不同時間沉積並照射UV光10分鐘之FTIR分析結果-----------------------------------------------53
圖4-49在100ml水中加入250M Iressa共沉積氧化鋅紙之FTIR吸收光譜信號之(a)無照射UV光、(b)照射UV光5min及(c) 照射UV光10min之C-Cl/C-O, N-H/C-O, C-H/C-O及C-F/C-O相對峰值比例與共沉積時間的關係----------------------------------------------------------------------------------------54
圖4-50在200ml水中加入250M Iressa共沉積氧化鋅紙之FTIR吸收光譜信號之(a)無照射UV光、(b)照射UV光5min及(c) 照射UV光10min之C-Cl/C-O, N-H/C-O, C-H/C-O及C-F/C-O相對峰值比例與共沉積時間的關係----------------------------------------------------------------------------------------55
圖4-51在300ml水中加入250M Iressa共沉積氧化鋅紙之FTIR吸收光譜信號之(a)無照射UV光、(b)照射UV光5min及(c) 照射UV光10min之C-Cl/C-O, N-H/C-O, C-H/C-O及C-F/C-O相對峰值比例與共沉積時間的關係----------------------------------------------------------------------------------------56
圖4-52在1ml水中加入100nM Staurosporine共沉積氧化鋅紙之FTIR吸收光譜信號之(a)無照射UV光、(b)照射UV光5min及(c) 照射UV光10min之C-H/C-O, N-H/C-O,相對峰值比例與共沉積時間的關係----------------------------------------------------------------------------------------------------57
圖4-53在1ml水中加入200nM Staurosporine共沉積氧化鋅紙之FTIR吸收光譜信號之(a)無照射UV光、(b)照射UV光5min及(c) 照射UV光10min之C-H/C-O, N-H/C-O,相對峰值比例與共沉積時間的關係----------------------------------------------------------------------------------------------------58

表目次

表2-1.本實驗中所使用之化學藥品種類與規格---------------------------------------------------------------------------------------------10
表2-2.氧化鋅基本性質---------------------------------------------------------------------------------------------------------------11

一.英文部分
[1] http://nano.nstm.gov.tw/NanoConcept/NanoTheory/NanoTech.htm
[3] Deneke, S. M. “Thiol-based antioxidants” Curr. Top. Cell. Regul. 2000, 36,
151–180.
[4] Danesh, J.; Lewington, S. “Plasma homocysteine and coronary heart disease:
systematic review of published epidemiological studies” J. Cardiovasc. Risk 1998,
5, Richie J. P.; Skowronski, L.; Abraham, P.; Leutzinger, Y. “Blood glutathione
concentrations in a large-scale human study” Clin. Chem. 1996, 42, 64–70.
[6] Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino,
R. B.; Wilson, P. W. F.; Wolf, P. A. “Plasma homocysteine as a risk factor for
dementia and Alzheimer's disease” N. Engl. J. Med. 2002, 346, 476–483.
[7] Refsum, H.; Ueland, P. M.; Nygard, O.; Vollset, S. E. “Homocysteine and
cardiovascular disease” Annu. Rev. Med. 1998, 49, 31–40.
[8] Gupta, V. J.; Wilcken, D. E. “Detection of cysteine-homocysteine mixed disulfide
in plasma of normal fasting man” Eur. J. Clin. Invest. 1978, 8, 205–207.
[9] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano, 2, 889-896, 2008,.
[10] T. Szabo, J. Nemeth, I. Dekany, “Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties,” Coll. Surf. A , 230, 23-35, 2003.
[11] Y. Wang, S. Gao, W.H. Ye, H.S. Yoon, Y.Y. Yang, “Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer,” Nat Mater, 5, 791-796, 2006.
[12] W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann,Z. Liu, et al. “FeCo/graphiticshell nanocrystals as advanced magnetic-resonance-imaging and nearinfrared agents. Nat Mater, 5, 971-976, 2006
[13] R.K. Visaria, R.J. Griffin, B.W. Williams, E.S. Ebbini, G.F. Paciotti, C.W. Song, et al. Enhancement of tumor thermal therapy using gold nanoparticle–assistedtumornecrosis factor-Adelivery,”.MolCancerTher, 5, 1014-1020, 2006.
[14] A. Nel, T. Xia, L. Madler, N. Li, “Toxic potential of materials at the nanolevel,” Science, 311, 622-627, 2006.
[15] A. Kumari, S. K.Yadav, S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids and Surfaces B: Biointerfaces 75, 1–18, 2010.
[16] K. S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W. E. Rudzinski.” Biodegradable polymeric nanoparticles as drug delivery devices”, Journal of Controlled Release 70, 1–20, 2001.
[17] Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, “Polysaccharides-based nanoparticles as drug delivery systems,” Advanced Drug Delivery Reviews, 60, 1650–1662, 2008.
[18] R. H. Müller, K. Mäder, S. Gohla, “Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art,” Eur. J. of Pharm. and Biopharm., 50, 161-177, 2000.
[19] S.A. Wissing, O. Kayser, R.H. Müller, “Solid lipid nanoparticles for parenteral drug delivery,” Adv. Drug Delivery Rev. 56, 1257– 1272, 2004.
[20] A. zur Mühlen, C. Schwarz, W. Mehnert, “Solid lipid nanoparticles (SLN) for controlled drug delivery- Drug release and release mechanism,” Eur. J. of Pharm. and Biopharm., 45, 149-155, 1998.
[21] G. Pastorin, W. Wu, S. Wieckowski, et al., “Double functionalisation of carbon nanotubes for multimodal drug delivery,” Chem. Commun. , 11, 1182-1184, 2006.
[22] W. Wu, S. Wieckowski, G. Pastorin, et al., “Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes,” Angew. Chem. Int. Ed. Engl., 44, 6358-6362, 2005.
[23] P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, “Au nanoparticles target cancer,” Nanotday, 2(1), 18-29, 2007
[24] S. D. Brown, P. Nativo, J. Smith, D. Stirling, P.R. Edwards, B. Venugopal, D. J. Flint, J.A. Plumb, D. Graham, and N.J. Wheate, “Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin,” J. Am. Chem. Soc., 132, 4678–4684, 2010.
[25] S.S. Agasti, A. Chompoosor, C.C. You, P. Ghosh, C.K. Kim, and V. M. Rotello, “Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles,” J. Am. Chem. Soc., 131(16), 5728–5729, 2009
[26] J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, B, Chen, “The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro,” Nanoscale Res Lett 5, 1063–1071, (2010)
[27] H. Zhang, B. Chen,, H. Jiang, C. Wang, H. Wang, and X. Wang, “A strategy for ZnO nanorod mediated multi-mode cancer treatment,” Biomaterials 32, 1906-1914, 2011.
[28] J.W. Rasmussen, E. Martinez, P. Louka, and D.G. Wingett, “Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications,” Expert Opin Drug Deliv., 7(9): 1063–1077, 2010.
[29] T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, “Iron
oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm., 2, 194–205, 2005.
[30] F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, “Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments,“ Bioconjugate Chem. 16, 1181–1188, 2005.
[31] H.A. Jeng, and J. Swanson, “Toxicity of metal oxide nanoparticles in mammalian cells,” J. Environ. Sci. Health, 41, 2699-2711, 2006.
[32] D. Guo, C. Wu, H. Jiang, et al., “Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation,” J. Photochem. Photobiol. B 93, 119-126, 2008.
[33] C. Hanley, J. Layne, A. Punnoose, K. M. Reddy, I. Coombs, A. Coombs, K. Feris, and D. Wingett, “Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles,” Nanotechnology, 19(29), 295103–295122, 2008.
[34] P.J. Moos, K. Chung, D. Woessner, M. Honeggar, N. S. Cutler, and J. M. Veranth, “ZnO Particulate Matter Requires Cell Contact for Toxicity in Human Colon Cancer Cells,” Chem. Res. Toxicol. 23, 733–739, 2010.
[35] R.J. Carmody, and T.G. Cotter, “Signaling apoptosis: a radical approach,” Redox Rep., 6, 77–90, 2001.
[36] S.W. Ryter, H.P. Kim, A. Hoetzel et al., “Mechanisms of cell death in oxidative stress,”. Antioxid. Redox. Signal, 9, 49-89, 2007.
[37] F. Xu, P. Zhang, A. Navrotsky, Z.-Y. Yuan, T.-Z. Ren, M. Halasa, B.-L. Su, “Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity,” Chem. Mater., 19, 5680–5686, 2007.
[38] H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, “Comparison of dye degradation efficiency using ZnO powders with various size scales,” J. Hazard Mater., 141, 645–652, 2007.
[39] T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, A. Bruinink, W.J. Stark, “In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility,” Environ. Sci. Technol., 40, 4374–4381, 2006.
[40] Mayuree Jaisai, Sunandan Baruah, and Joydeep Dutta, “Paper modified with ZnO nanorods–antimicrobial studies”, Beilstein J. Nanotechnol., 3, 684–691, 2012.
[41] Hemtej Gullapalli, Venkata S. M. Vemuru, Ashavani Kumar“, Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor”, small 2010, 6, No.15, 1641–1646, 2010.
[44] Y.Chen,D.M.Bagnal,H.J.Koh,K.T.Park,K.Hiraga,Z.Zhu,and T.Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire:Growth and characterization, ”J.Appl.phys.84,3912(1998).
[46] Naoki Satoh,Shunji Bandow,Keisaku Kimura, “Dispersibility of fine metal particles in organic solvents”, Journal of Colloid and Interface Science., Vol.131, No. 1,August 1989.
[47] J. Xu, Q. Pan, Y. Shun, and Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor”, Sens. Actuators B: Chem., 66, 277–279, 2000.
[48] X. Wei, B. Man, C. Xue, C. Chen , and M. Liu, ”Blue Luminescent Center and Ultraviolet-Emission Dependencer of ZnO Films Prepared by Pulsed Laser Deposition, ”Jpn.J.Appl. Phys.45,8586(2006).
[49] B.Lin, Z.Fu,and Y.Jia, ”Green luminescent center in undoped zinc oxide films deposited on silicon substrates” ,Appl. Phys. Lett., 79(7), 943, 2001.
[51] E.L.Paradis and A.J.Shuskus, “R.f.sputtered epitaxial ZnO films on sapphire for integrated optics, ”Thin Solid Films38,131(1976)
[54] Vahid Khoshkava, “Polypropylene(PP)nanocomposites incorporating nanocrystalline cellulos(NCC) ”Department of Chemical Engineering McGill Univeristy, Montreal, Canada.(2013)
[55] Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri. “Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction”,J. Am. Chem. Soc., 124, 9074-9082, 2002.
[56] Kalyani Ghule, Anil Vithal Ghule, Bo-Jung Chen and Yong-Chien Ling,“Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study” ,Green Chem., 8, 1034–1041, 2006.
[57] T.A.Dankovich and D.G.Gray, “Contact angle measurements on smooth nanocrystalline cellulose (I) thin films”, Journal of Adhesion Science and Technology., Vol 25, 6-7, 2010.
[58] Naoki Satoh,Shunji Bandow,Keisaku Kimura, “Dispersibility of fine metal particles in organic solvents” ,Joumal of Colloid and Interface Science., Vol.131, No. 1,August 1989.
[62] D.W.Bahnemann, C. Kormann and M.R. Hoffmann, “Preparation and Characterization of Quantum Size Zinc Oxide: a Detailed Spectroscopic Study”, J. Phys. Chem., 91, 3789-3798, 1987.
[63] J. Zheng, M.S. Stevenson, R.S. Hikida, P.G. Van Patten,P.G. “Influence of PH on dendrimer-protected nanoparticles” ,J. Phys. Chem. B, Vol. 106, No. 6, (14 February 2002).
[64] S. Keki, J. Torok,G. Deak,L. Daroczi,L.;Zsuga,M.“Silver Nanoparticles by PAMAM-Assisted Photochemical Reduction of Ag(+)” ,Journal of Colloid and Interface Science., Vol 229, Issue 2, 550–553, 15 September 2000.
[65] J. Cong, Y. Fan, X. Yang, and Z. Zhang“, Architecture and Synthesis for Multi-Cycle Communication”, IEEE, 1-3 Oct, 77 - 78, 2003.
[68] http://www.drugs.com/pro/iressa.html
[69] http://en.wikipedia.org/wiki/Staurosporine
[70] http://www.itrc.narl.org.tw/Publication/Newsletter/no97/p12.php
二.中文部分
[2] 馬遠榮 低維奈米材料 東華大學應用物理研究所暨物理學系
[42] 祁紅璋, 李成魁, 趙慎強, 王宇鑫, “奈米粉體的溶膠-凝膠法製備技術”, 同濟大學材料科學與工程學院,上海市金屬功能材料開發應用重點實驗室.
[43] 陳秀連,“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究”,國立台灣科技大學材料科技研究所, (2002)
[45] 侯鎮球, “高中職奈米材料課程實驗之設計-利用化學與電化學還原法製備銀奈米粒子”,國立中正大學化學暨化學工程研究所(2006).
[50] 鐘明芳, “參雜錳之氧化鋅奈米粒子的製備與特性分析”,國立高雄應用科技大學化學工程系與材料工程系碩士班,(2009)
[52] 林鴻明 奈米材料未來的發展趨勢 - 大同大學 材料工程學系
[53] 王緯書醫師 抗癌新藥IRESSA 台北榮民總醫院 腫瘤科
[59] 鄭育玲,“合成奈米銀粒子及其在多孔二氧化鈦上之特性研究”(2005).
[60] 郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 國立台灣大學化學系及凝態中心.
[61] 徐志宗, “氧化鋅奈米結晶之製備與分散”,國立中央大學化學工程與材料工程學研究所,(2004)
[66] 祁紅璋, 李成魁, 趙慎強, 王宇鑫, “奈米粉體的溶膠-凝膠法製備技術”, 同濟大學材料科學與工程學院,上海市金屬功能材料開發應用重點實驗室.
[67] 李朝暉,戴偉,傅吉全, “微乳液法製備奈米催化劑的應用研究進展”北京服裝學院材料科學與工程學院,北京重點實驗室;中石化北京工研究院(2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top