跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗憲
研究生(外文):Zong-Xian Wu
論文名稱:使用γ-APTES與金屬氧化物奈米粒混合物為感測層對多晶矽線於pH感測之效應
論文名稱(外文):Effect of Using a Mixture of γ-APTES and Metal Oxide Nanoparticles as the Sensing Membrane for Polysilicon Wire on pH Sensing
指導教授:吳幼麟
指導教授(外文):You-Lin Wu
口試委員:胡振國吳幼麟林錦正徐中平
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:68
中文關鍵詞:金屬氧化物奈米顆粒氧化鋁二氧化鈦3-氨基丙基三乙氧基矽氧烷分散劑多晶矽線溶液相沉積法
外文關鍵詞:metal oxide nanoparticlesAl2O3TiO2dispersantpolysilicon wire3-Aminopropyltriethoxysilanesolution phase deposition(SPD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
基於過去本實驗室成功的將二氧化矽奈米粒與3-氨基丙基三乙氧基矽氧烷(γ-APTES)的混合溶液沉積於多晶矽線表面可以大大提升多晶矽線感測靈敏度,本論文旨在研究利用氧化鋁和二氧化鈦金屬氧化物奈米顆粒,經由3-氨基丙基三乙氧基矽氧烷的混合溶液成長感測薄膜於多晶矽線感測器是否可行,並將其應用於酸鹼緩衝溶液的感測。我們使用溶液相沉積法來將改感測薄膜製備於多晶矽線的感測器的表面上,並進一步探討不同種類的金屬奈米顆粒、不同的分散劑、不同的金屬奈米顆粒/3-氨基丙基三乙氧基矽氧烷比例、以及不同的奈米顆粒/分散劑的比例關係對多晶矽線感測進行酸鹼的影響,以得到最佳的多晶矽線感測靈敏度。分散劑的目的是用來增加奈米顆粒於混合溶液中的懸浮和減少聚積的現象。
本實驗選擇了氧化鋁及二氧化鈦兩種具高介質常數的金屬氧化物奈米顆粒來與3-氨基丙基三乙氧基矽氧烷製成混合感測薄膜。分散劑則使用直接向奇佳化學有限公司購買的2566, 2760 (氧化鋁)及1186, 1142, 及2145(二氧化鈦)等。實驗結果我們可以發現,對氧化鋁奈米粒而言,分散劑2566可以獲得最佳的感測效果,而對二氧化鈦奈米粒而言,使用1186分散劑可以有較好的結果。氧化鋁奈米粒與3-氨基丙基三乙氧基矽氧烷的混合溶液成長薄膜於多晶矽線表面,在酸鹼緩衝溶液的感測上,3-氨基丙基三乙氧基矽氧烷與氧化鋁奈米顆粒重量百分比2%和分散劑體積百分比0.3%經由溶液相沉積法沉積時間5分鐘,可以得到較好的感測電流,而3-氨基丙基三乙氧基矽氧烷與二氧化鈦奈米顆粒重量百分比0.5%和分散劑體積百分比0.3%經由溶液相沉積法沉積時間10分鐘,可以得到較好的感測電流。而使用氧化鋁奈米顆粒與3-氨基丙基三乙氧基矽氧烷混合感測層相對於其他的奈米顆粒與3-氨基丙基三乙氧基矽氧烷混合感測層在感測酸鹼緩衝溶液的靈敏線性度上有較好的靈敏度。我們的實驗結果證實,使用分散劑來增加金屬奈米顆粒懸浮於溶液中是有必要的。
Based on the finding of our research group that using a mixture of silicate nanoparticles and 3-Aminopropyltriethoxysilane (γ-APTES) as the sensing membrane can enhance the sensitivity of poly-silicon wire sensor, the purpose of this work is to investigate the feasibility of using mixtures of metal oxide nanoparticles and γ-APTES (3-Aminopropyltriethoxysilane) as the sensing membrane for poly-silicon wire and apply it for pH sensing. Solution phase deposition (SPD) method was adopted to deposit the individual mixture onto the PSW surface. Various ratios of dispersant/γ-APTES and nanoparticles/γ-APTES as well as different dispersants were tested when prepared the mixtures. The purpose of adding dispersant in the suspension of nanoparticles is to separate and avoid the conglomeration of nanoparticles. Dispersant for the best performance of PSW pH sensor as well as the optimum dispersant/γ-APTES ratio and nanoparticles/γ-APTES ratio for highest sensitivity of the PSW pH sensor were determined.
Two different metal oxide nanoparticles, Al2O3 and TiO2, were used in this work. Dispersant 2566, 2760 for Al2O3 nanoparticles, and 1186, 1142, 2145 for TiO2 nanoparticles were tested in this work, all of which were purchased directly from the Marvel Chemical, Taiwan. From the experimental results, best pH sensing performance performance of the poly-silicon wire sensor can be obtained when the dispersant 2566 is used for Al2O3 and γ-APTES mixture, and 1186 for TiO2 and γ-APTES mixture. For Al2O3, it is found that a SPD deposition time of 5 min gives the highest PSW channel current, and a dispersant/γ-APTES ratio of 0.3% and nanoparticles/γ-APTES ratio of 2% is the best for PSW pH sensor performance. For TiO2, the best performance of the PSW pH sensor is found at a SPD deposition time of 10 min and with a dispersant/γ-APTES ratio of 0.3% and nanoparticles/γ-APTES ratio of 0.5%. Among other nanoparticles, it is found that the using the mixture of Al2O3 nanoparticles and γ-APTES as the sensing membrane has the best sensitivity. Our result also confirms that dispersant is absolutely necessary for preparing the nanoparticles suspension.
目次
謝誌........................................................I
中文摘要....................................................II
英文摘要....................................................IV
目次........................................................VI
圖次........................................................IX

第一章 緒論..................................................1
1.1 研究背景.................................................1
1.2 奈米顆粒.................................................1
1.3 奈米顆粒應用於生物感測....................................2
1.4 γ-APTES+NPs薄膜.........................................3
1.5 分散劑(Dispersant).......................................4
1.6 SU-8負型光阻.............................................5
1.7 聚二甲基矽氧烷(Poly-dimethylsiloxane,PDMS)...............6
1.8 原子力顯微鏡.............................................6
1.9 研究動機.................................................7
第二章 實驗設計與步驟.........................................17
2.1 奈米顆粒分散之表面形貌薄膜樣本製備..........................17
2.2 NPs + γ-APTES + Dispersant感測薄膜樣本製備................18
2.2.1 Al2O3 + γ-APTES + Dispersant..........................18
2.2.1.1 不同種類氧化鋁奈米粒分散劑及不同SPD沉積時間..............19
2.2.1.2 較佳分散劑與不同氧化鋁奈米粒/γ-APTES混合比例之沉積時間...19
2.2.1.3 較佳氧化鋁奈米粒/γ-APTES混合比例但不同分散劑/γ-APTES比例之沉積時間............20
2.2.2 TiO2 + γ-APTES + Dispersant...............................................21
2.2.2.1 不同種類二氧化鈦奈米粒分散劑及不同SPD沉積時間................................21
2.2.2.2 較佳分散劑與不同二氧化鈦奈米粒/γ-APTES混合比例之沉積時間.....................22
2.2.2.3 較佳二氧化鈦奈米粒/APTES混合比例但不同分散劑/γ-APTES混合比例之沉積時間........22
2.3 元件樣本製備.................................................................23
2.3.1 多晶矽線製作...............................................................23
2.3.2 隔離窗口製作...............................................................25
2.4 實驗步驟.....................................................................26
2.4.1 奈米顆粒分散之表面形貌薄膜量測...............................................27
2.4.2 γ-APTES + NPs薄膜電流靈敏度量測.............................................27
第三章 結果與討論.................................................................36
3.1 薄膜奈米顆粒分散之表面形貌量測..................................................36
3.2 NPs + γ-APTES + Dispersant感測薄膜電流分析....................................37
3.2.1 Al2O3 + γ-APTES + Dispersant感測薄膜.......................................37
3.2.1.1 不同種類分散劑對不同時間沉積固定混合比例之感測層多晶矽線感測電流比較分析........37
3.2.1.2 較佳分散劑與不同NPs/γ-APTES混合比例以不同沉積時間之電流比較分析...............39
3.2.1.3 較佳NPs比例不同分散劑比例之沉積時間電流比較分析..............................39
3.2.1.4 使用不同混合物感測層多晶矽線之酸鹼偵測特性...................................40
3.2.2 TiO2 + γ-APTES + Dispersant感測薄膜........................................41
3.2.1.1不同種類分散劑對不同時間沉積固定混合比例之感測層之沉積時間多晶矽線感測電流比較分析..41
3.2.1.2 較佳分散劑與不同NPs/γ-APTES混合比例以不同沉積時間之電流特性比較分析.............43
3.2.1.3 較佳NPs比例不同分散劑比例之沉積時間電流比較分析...............................43
3.2.1.4 使用不同混合物感測層多晶矽線之酸鹼偵測.......................................44
3.3 不同混合物感測層pH感測之靈敏度比較..............................................45
3.3.1 Al2O3 + γ-APTES + Dispersant量測pH值之靈敏度比較.............................45
3.3.2 TiO2 + γ-APTES + Dispersant量測pH值之靈敏度比較..............................46
3.3.3 不同奈米粒子量測pH值之靈敏線性度比較...........................................46
第四章 結論與未來展望.............................................................63
4.1 結論........................................................................63
4.2 未來展望...................................................................64
參考文獻........................................................................65


圖次
圖1-1 生物感測器示意圖[29]........................................................9
圖1-2 奈米顆粒使用分散劑示意圖[27].................................................10
圖1-3 奈米顆粒增加感測表面積示意圖[28]..............................................10
圖1-4 γ-APTES分子結構示意圖[14]...................................................11
圖1-5 矽奈米線生物感測器結構示意圖[15]..............................................11
圖1-6 γ-APTES分子水解反應[16] [18]................................................12
圖1-7 γ-APTES分子聚合反應 [17],[18]...............................................12
圖1-8-1 γ-APTES成長示意圖[20].....................................................13
圖1-8-2 γ-APTES成長後形成APS結構示意圖[19].........................................13
圖1-9 γ-APTES薄膜結構示意圖[19]...................................................14
圖1-10 γ-APTES分子反應示意圖[21]..................................................15
圖1-11 原子力顯微鏡基本架構圖[30]..................................................16
圖2-1 表面形貌薄膜製備示意圖.......................................................29
圖2-2 NPs + γ-APTES + Dispersant混合溶液加入乙醇沉積薄膜製備之示意圖.................29
圖 2-3-1 在矽晶片上成長 30nm 的乾氧................................................30
圖 2-3-2 在氧化層上成長 100nm 的 N-type 多晶矽.....................................30
圖2-3-3 將光阻旋塗於樣本表面.......................................................30
圖2-3-4 光阻經曝光與顯影..........................................................31
圖2-3-5 對多晶矽薄膜進行蝕刻.......................................................31
圖2-3-6 去除光阻之後,完成元件的製..................................................31
圖2-4-1 多晶矽線示意圖.............................................................32
圖2-4-2 多晶矽線最小線寬示意圖......................................................32
圖2-4-3 多晶矽線AFM影像示意圖......................................................32
圖2-5 PDMS基板模型製作流程圖.......................................................33
圖2-6 PDMS模型基板示意圖...........................................................34
圖2-7 PDMS模型製作流程示意圖........................................................34
圖2-8 薄膜電流靈敏度量測示意圖......................................................35
圖3-1-1 奈米顆粒添加不同分散劑之表面形貌.............................................48
圖3-1-2 氧化鋁奈米顆粒添加分散劑與γ-APTES混合溶液之溶液態.............................49
圖3-1-3 二氧化鈦奈米顆粒添加分散劑與γ-APTES混合溶液之溶液態...........................49
圖3-2-4 不同種類分散劑2566和2760,(NPs + γ-APTES + Dispersant)/C2H5OH體積百分
比0.01%,沉積時間1分鐘到20分鐘,量測pH = 4之電流關係圖。..............................50
圖3-2-5 不同氧化鋁奈米顆粒重量百分比,(NPs + γ-APTES + Dispersant)/C2H5OH體積百
分比0.01%,沉積時間1分鐘到20分鐘,量測pH = 4之電流關係圖。............................51
圖3-2-6 不同分散劑2566體積百分比,(NPs + γ-APTES + Dispersant)/C2H5OH體積百分
比0.01%,沉積時間1分鐘到20分鐘,量測pH = 4之電流關係圖。..............................52
圖3-2-7 不同混合溶液,NPs/γ-APTES = 2%,Dispersant/γ-APTES = 0.3%,γ-APTES,
(NPs + γ-APTES + Dispersant)與C2H5OH體積百分比0.01%,沉積時間5分鐘,量
測pH = 4 ~ 10之電流關係圖。........................................................53
圖3-2-8 不同種類分散劑1186、分散劑1142和分散劑2760,(NPs + γ-APTES +
Dispersant)/C2H5OH體積百分比0.01%,沉積時間1分鐘到20分鐘,量測pH = 4之電流關係圖。.....54
圖3-2-9 不同二氧化鈦奈米顆粒重量百分比,(NPs + γ-APTES + Dispersant)
/C2H5OH體積百分比0.01%,沉積時間1分鐘到20分鐘,量測pH = 4之電流關係圖。................55
圖3-2-10 不同分散劑1186體積百分比,(NPs + γ-APTES + Dispersant)/
C2H5OH體積百分比0.01%,沉積時間1分鐘到20分鐘,量測pH = 4之電流關係圖。.................56
圖3-2-11 不同混合溶液,NPs/γ-APTES = 0.5%,Dispersant/γ-APTES = 0.3%,
γ-APTES,(NPs + γ-APTES + Dispersant)與C2H5OH體積百分比0.01%,沉積時
間10分鐘,量測pH = 4 ~ 10之電流關係圖。.............................................57
圖3-2-12 不同氧化鋁奈米顆粒重量百分比,Dispersant/γ-APTES =0.3%,
(NPs + γ-APTES + Dispersant)/C2H5OH體積百分比0.01%,沉積時間5分鐘,
量測pH = 4~10之感測靈敏度關係圖。...................................................58
圖3-2-13 不同分散劑2566體積百分比,NPs/γ-APTES = 2%, (NPs + γ-APTES + Dispersant)
/C2H5OH體積百分比0.01%,沉積時間5分鐘,量測pH = 4 ~ 10之感測靈敏度關係圖。.............59
圖3-2-14 不同二氧化鈦奈米顆粒重量百分比,Dispersant/γ-APTES = 0.3%,
(NPs + γ-APTES + Dispersant)/C2H5OH體積百分比0.01%,沉積時間10分鐘,
量測pH = 4 ~ 10之感測靈敏度關係圖。.................................................60
圖3-2-15 不同分散劑1186體積百分比,NPs/γ-APTES = 0.5%, (NPs + γ-APTES + Dispersant)
/C2H5OH體積百分比0.01%,沉積時間10分鐘,量測pH = 4 ~ 10之感測靈敏度關係圖。............61
圖3-2-16 不同種類奈米顆粒,量測pH = 4 ~ 10之感測靈敏線性度關係圖。.....................62
[1] Fernando Patolsky, Gengfeng Zheng, Charles M. Lieber, Devices based on nanowires are emerging as a powerful platform for the direct detection of biological and chemical species, including low concentrations of proteins and viruses,NANOWIRE-BASED BIOSENSORS, (2006)(P4261-4269)
[2] Jing-Jenn Lin , Po-Yen Hsu , You-Lin Wu and Jheng-Jia Jhuang. Characteristics of Polysilicon Wire Glucose Sensors with a Surface Modified by Silica Nanoparticles/y-APTES Nanocomposite. Sensors , ISSN l424-8220 , (20ll)
[3] P.A. Hartley, G.D. Parfitt, L.B. Pollack, The role of the van der Waals force in the agglomeration of powders containing submicron particles, Powder Technology, (1985) (P35–46)
[4] 邱昱維,楊子寬,黃紀嚴,矽烷耦合劑與奈米氧化鋁包覆模式探討
[5] N. C. Tansil, Z. Gao, Nanoparticles in biomolecular detection, nanotoday FEBRUARY VOLUME 1 NUMBER 1, (2006)
[6] S. Taue, K. Nishida, H. Sakaue, and T. Takahagi, Immobilization of Gold Nanoparticles on Silanized Substrate for Sensors Based on Localized Surface Plasmon Resonance, e-J. Surf. Sci. Nanotech. Vol. 5, (2007)(P74-79)
[7] N. Nath, A. Chilkoti, A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface, Anal. Chem. (2002)(P504-509)
[8] M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Maccedo,M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, Journal of Magnetism and Magnetic Materials 279(2004)(P210–217)
[9] L. Wang, W. Zhao, W. Tan, Bioconjugated Silica Nanoparticles:Development and Applications, Nano Res 1 (2008)(P99-115)
[10] X. L. Luo, J. J. Xu, W. Zhao, H. Y. Chen, Glucose biosensor based on ENFET doped with SiO2 nanoparticles, Sensors and Actuators B 97(2004)(P249–255)
[11] H. Yang, Y. Zhu, Size dependence of SiO2 particles enhanced glucose biosensor, Talanta 68(2006) (P569–574)
[12] Bogusława GRADZIK, Mirosława EL FRAY, Ewa WIŚNIEWSKA, Surface modification of TiO2 and SiO2 nanoparticles for application in polymeric nanocomposites, CHEMIK 2011, 65, 7, (P621-626)
[13] Ghezelbash, Z., Ashouri, D., Mousavian, S., Ghandi, A. H., Rahnama, Y. Surface modified Al 2 O 3 in fluorinated polyimide/Al 2 O 3 nanocomposites: Synthesis and characterization. Bulletin of Materials Science, 35(6), (2012)(P925-931)
[14] Koji Nishida, Hiroyuki Sakaue, and Takayuki Takahagi, Immobilization of Gold Nanoparticles on Silanized Substrate for Sensors Based on Localized Surface
Plasmon Resonance, e-Journal of Surface Science and Nanotechnology. (2007)
[15] P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measuremtnts, IEEE Trans. Biomed. Eng. 17(1970)(P70-71)
[16] A. Simon, 1 T. Cohen-Bouhacina, M. C. Port´e, J. P. Aim´e, and C. Baquey. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface. Journal of Colloid and Interface Science 251(2002) (P278–283)
[17] Ichiro Shimizu,a Akihiro Yoshino,b Hirofumi Okabayashi,b* Etsuo Nishioc and
Charmian J. OÏConnord . Kinetics of interaction of 3-aminopropyltriethoxysilane on a silica gel surface using elemental analysis and di†use reÑectance infrared Fourier transform spectra. (1996)
[18] R. P. Alonso, F. Rubio, J. Rubio, J. L. Oteo, Study of the hydrolysis and condensation of c-Aminopropyltriethoxysilane by FT-IR spectroscopy, J Mater Sci. 42 (2007) (P595–603)
[19] Joonyeong Kim ∗, Paul Seidler, Lai Sze Wan, Catherine Fill, Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. Journal of Colloid and Interface Science 329 (2009) (P114–119)
[20] Rong Fan, Min Yue, Rohit Karnik, Arun Majumdar, and Peidong Yang. Polarity Switching and Transient Responses in Single Nanotube Nanofluidic Transistors. PHYSICAL REVIEW LETTERS, PRL 95, 086607 (2005)
[21] Alexander A. Golub, Alexander I. Zubenko, Boris V.Zhmud, γ-APTES Modified Silica Gels: The Structure of the Surface Layer. JOURNAL OF COLLOID AND INTERFACE SCIENCE 179 (1996) (P482–487)
[22] YL Wu, PY Hsu, JJ Lin ,Polysilicon wire glucose highly immune to interference,
Biosens Bioelectron,(20ll), 228l-6
[23] P.Y. Hsu, J.J. Lin, Y.L. Wu, W.C. Hung., A.G. Cullis, Sensors and Actuators B l42 , (2009) (P273–279)
[24] Y.L. Wu, P.Y. Hsu, J.J. Lin, Biosensors and Bioelectronics 26, (20ll)(228l–2286)
[25] Y.L. Wu, [23]J.J. Lin, P.Y. Hsu, C.P. Hsu, Sensors and Actuators B l55, (20ll) (P709–7l5)
[26] N. Mandzy, E. Grulke, T. Druffel, Breakage of TiO2 agglomerates in electrostaticallystabilized aqueous dispersions, Powder Technology 160 (2005) (P121 – 126)
[27]博陶奈米科技有限公司-研磨代工-分散劑網頁資訊(http://www.acnt.com.tw/index.php/homepage)
[28] Aisheng Huang, Fangyi Liang, Frank Steinbach, Jürgen Caro, Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker,Journal of Membrane Science. Volume 350, Issues 1–2, 15 March (2010) (P5–9)
[29] Kenzo Maehashi, Taiji Katsura, Kagan Kerman, Yuzuru Takamura,Kazuhiko
Matsumoto, and Eiichi Tamiya , Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. (2006)
[30] Jia-Bin Guo, Polysilicon wire inorporated with mixture of silica nanoparticle, 碩論(2012)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊