跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭荏婉
研究生(外文):Ren-Wan Peng
論文名稱:甲基咪唑紫質與對苯二胺之電化學作用研究
論文名稱(外文):Electrochemical Studies of the Interactions between 1-methylimidazolyl porphyrins and p-phenylenediamine.
指導教授:蘇玉龍蘇玉龍引用關係
指導教授(外文):Yuhlong Oliver Su
口試委員:鄭淑華葉鎮宇
口試委員(外文):Shu-Hua ChengChen-Yu Yeh
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:95
中文關鍵詞:甲基咪唑紫質甲基咪唑鋅紫質電化學光譜電化學電化學誘導氫鍵
外文關鍵詞:electrochemistryspectroelectrochemistrymeso-(1-methylimidazolyl)porphyrinmeso-(1-methylimidazolyl)zincporphyrinelectrochemically induced hydrogen bonding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文為研究甲基咪唑紫質與甲基咪唑鋅紫質的電化學性質,及其與對苯二胺之
間的電化學作用。循環伏安法實驗中,觀察到對苯二胺氧化後與紫質的甲基咪唑取代
基作用形成電化學誘導氫鍵的現象,觀察其氫鍵生成前後電化學性質的改變,探討對
苯二胺與紫質產生電化學誘導氫鍵後,對紫質氧化的影響。
單取代甲基咪唑鋅紫質在中性狀態下為二聚體,因其溶解度不佳,在循環伏安法
中不易進行電化學分析,利用形成常數較高的軸配位基與鋅紫質進行光譜滴定,觀察
鋅紫質二聚體與配位基透過螯合作用轉換為單體的光譜特性改變,再經由光可透過的
薄層電極(OTTLE)進行光譜電化學分析。
The electrochemical and spectral properties of meso-(1-methylimidazolyl)porphyrins
and meso-(1-methylimidazolyl)zincporphyrin and their interactions with
p-phenylenediamine were identified in this study. By employing cyclic voltammetry,
electrochemically induced hydrogen bonding between imidazole substituents of porphyrins
and oxidized phenylenediamine were acknowledged. The changes of their electrochemical
behavior with and without the presence of phenylenediamine were also discussed in this
terms
meso-(1-methylimidazolyl)zincporphyrin is a dimer form in its neutral state because
of its poor solubility in solvent. So it is difficult to observe its electrochemical properties
by cyclic voltammetry. Therefore, we used higher constant axial ligand titrated zinc
porphyrins, by using spectrophotometric titration to observe the spectral characteristics of
its monomer. Through light permeable optically transparent thin–layer electrode(OTTLE)
the oxidation potentials of monomer were primarily recognized in this study.
目次
謝誌 I
摘要 II
Abstract III
目次 IV
圖目次 VI
表目次 XIII
流程目次 XIV

第一章 序論 ............................................................................................................... - 1 -
第一節 紫質的簡介 .................................................................................................- 1 –

第二節 金屬紫質的配位性質.................................................................................- 4 -
第三節 咪唑紫質的性質與應用 ............................................................................ - 9 -
第四節 對苯二胺與吡啶的電化學誘導氫鍵現象 ...............................................- 14 -
第五節 對苯二胺紫質與咪唑之電化學誘導氫鍵現象 .......................................- 18 -
第六節 研究目的 ...................................................................................................- 25 -
第二章 實驗 .................................................................................................................. - 26 -

第一節 藥品 ...........................................................................................................- 26-
第二節 儀器設備與方法 .......................................................................................- 27 -
(I) 電化學儀器 .............................................................................................. - 27 -

(II) 光譜電化學裝置..................................................................................... - 27 -
第三節 咪唑紫質的合成 .......................................................................................- 28 -

(I) H2ImTPP 之合成方法[25] .......................................................................... - 28 -
(II) H2TImP 的合成方法[32] ........................................................................... - 29 -
(III) ZnImTPP 的合成方法[33] ....................................................................... - 30 -
(IV) ZnImTPP 的光譜滴定 ........................................................................... - 31 -

第三章 甲基咪唑紫質的性質研究 .............................................................................. - 49 -

第一節 甲基咪唑紫質的性質研究 ........................................................................- 49 -
(I) H2ImTPP 的循環伏安圖............................................................................ - 50 -
(II) H2TPP 的循環伏安圖............................................................................... - 51 -
(III) H2TImP 的循環伏安圖........................................................................... - 53 -
(IV) H2ImTPP 的光譜電化學........................................................................ - 54 -
(V) H2TPP 的光譜電化學 ............................................................................. - 60 -
(VI) H2TImP 的光譜電化學 ......................................................................... - 63 -
第二節 甲基咪唑紫質與對苯二胺的電化學誘導氫鍵作用研究 .......................- 66 - (I) 以循環伏安法觀察電化學誘導氫鍵的作用 .......................................... - 66 -
(II) 以光譜電化學法觀察 PD 與紫質的作用.............................................. - 72 -

第三節 甲基咪唑鋅紫質的光譜及光譜電化學性質研究 ...................................- 78 - (I) ZnImTPP 的配位性質研究 ...................................................................... - 78 -
(II) ZnImTPP 的光譜電化學 ......................................................................... - 82 -
(III) ZnTPP 的光譜電化學 ............................................................................ - 90 -

第五章 結論 .................................................................................................................. - 93 -

參考文獻 ........................................................................................................................ - 94 -

圖目次

Figure 1-1 Structure of the porphyrin............................................................................... - 1 -

Figure 1-2 Absorption spectral of tetraphenylporphyrins (A) H2TPP; (B) ZnTPP. ......... - 2 - Figure 1-3 Isoporphyrin formation during the electrochemical oxidation of ZnTPP....... - 3 - Figure 1-4 ZnOEP and pyridine derivatives in Table 1-3. ............................................... - 6 -
Figure 1-5 Structure of the porphyrins and imidazoles. ................................................... - 7 - Figure 1-6 Formation of a light-harvesting antenna-acceptor composite by hetero-
complementary coordination. ................................................................................... - 9 -

Figure 1-7 Equilibrium between ImZnP and ImMnP to give homodimers (ImZnP)2 and (ImMnP)2, and the heterodimer ImZnP-ImMnP....................................................... - 9 -
Figure 1-8 Structure of PPAA, TBPH, adamantane and porphyrins. ............................. - 10 -

Figure 1-9 UV–vis spectra of (A) ImTPFPP–Fe(III)Cl (solid line) and TPFPP–Fe(III)Cl (doted line) in acetonitrile at rt.. Cell length=1cm; (B) ImTPFPP–Fe(III)Cl dimer to monomer on the addition of 1-MeIm in acetonitrile (ImTPFPP–Fe(III)Cl: 2.8×10−5 M,
................................................................................................................................ - 13 -

Figure 1-10 Structure of substituted phenylenediamines ............................................... - 14 -

Figure 1-11 The second oxidation potential of phenylenediamines (PD) varies because of hydrogen-bonding formation for PD+•with pyridines and alcohols. ...................... - 15 -
Figure 1-12 CVs of 1 mM PD-1 in CH3CN containing 0.1 M TBAP and various concentration of 3,5-Cl2Py. Scan rate: 0.1 V/s. Working electrode: glassy carbon disk (area = 0.07 cm2). ................................................................................................... - 15 -
Figure 1-13 (A) Experimental and (B) simulated CVs of 1mM PD-1 in CH3CN containing

0.1 M TBAP and various concentrations of 2,4,6-Me3Py. Scan rate: 0.1 V/s. Working electrode: glassy carbon disk (area = 0.07 cm2). .................................................... - 16 -
Figure 1-14 (A) Experimental and (B) simulated CV of 1mM PD-1 in CH3CN containing

0.1M TBAP and various concentrations of ethanol. [ethanol] = 0~2.85 M overlay. Scan rate: 0.1 V/s.Working electrode: glassy carbon disk (area = 0.07 cm2)......... - 17 -
Figure 1-15 Structures of phenylenediamine (PD) and PD-substituted zinc porphyrins…….

................................................................................................................................ - 18 -

Figure 1-16 Cyclic voltammetry of 1.0×10-3 M ZnTMP-PD in the presence of

N-methylimidazole in CH2Cl2 containing 0.1 M TBAP: [MeIm] = (A) 0.00, (B) 0.50,

(C) 1.00, (D) 1.50 equiv. of ZnTMP-PD. Working electrode: glassy carbon. Scan rate: 0.1 V/s..................................................................................................................... - 20 - Figure 1-17 (A) Experimental and (B) simulated CV of 1 mM PD in CH2Cl2 containing 0.1
M TBAP and various concentrations of imidazole. Scan rate: 0.1 V/s. Working electrode: glassy carbon disk (area = 0.07 cm2). .................................................... - 21 -
Figure 1-18 CV of 1 mM ZnTMP in CH2Cl2 containing 0.1 M TBAP and various concentrations of imidazole. Scan rate: 0.1 V/s. Working electrode: glassy carbon disk (area = 0.07 cm2). ................................................................................................... - 22 -
Figure 1-19 (A) Experimental and (B) simulated CV of 1 mM ZnTMP-Ph-PD in CH2Cl2 containing 0.1 M TBAP and various concentrations of imidazole. Scan rate: 0.1 V/s.Working electrode: glassy carbon disk (area = 0.07 cm2)................................ - 23 -
Figure 2-1 Absorption spectral changes of 1×10-5 M ZnImTPP in CH2Cl2 in the presenceof
various concentrations of Py................................................................................... - 36 -

Figure 2-2 Plot log[Py] vs. Log[2(Ax-Ai)2/(Af-Ax)(ε2-1/2ε1)] at 428nm...................... - 38 - Figure 2-3 Plot log[Py] absorbance at 428nm. ............................................................... - 38 -
Figure 2-4 Absorption spectral changes of 1×10-5 M ZnImTPP in CH2Cl2 in the presenceof various concentrations of imidazole. ...................................................................... - 40 -
Figure 2-5 Plot log [HIm] vs. Log[2(Ax-Ai)2/(Af-Ax)(ε2-1/2ε1)] at 429 nm................. - 41 - Figure 2-6 Plot log [HIm] vs. absorbance at 429 nm. .................................................... - 42 -

Figure 2-7 Absorption spectral changes of 1×10-5 M ZnImTPP in CH2Cl2 in the presence of various concentrations of MeIm。 ......................................................................... - 45 -
Figure 2-8 Plot log [MeIm] vs. Log[2(Ax-Ai)2/(Af-Ax)(ε2-1/2ε1)] at 429 nm. ............. - 48 - Figure 2-9 Plot log [MeIm] vs. absorbance at 429 nm. .................................................. - 48 -
Figure 3-1 Cyclic voltammograms of 1.0×10-3 M H2ImTPP in CH2Cl2 containing 0.1 M TBAP. Sacn rate = 0.1 V/s. ..................................................................................... - 50 -
Figure 3-2 Cyclic voltammograms of 1.0×10-3 M H2TPP in CH2Cl2 containing 0.1 M TBAP. Sacn rate = 0.1 V/s.................................................................................................. - 51 -
Figure 3-3 Cyclic voltammograms of 1.0 ×10-3 M H2ImTPP in CH2Cl2 containing 0.1 M TBAP. Scan rate:(A) 0.8 V/s; (B) 10 V/s; (C) 100 V/s; (D) 1000 V/s; (E) 0.001V/s…
................................................................................................................................ - 52 -

Figure 3-4 Cyclic voltammograms of 1.0×10-3 M H2TImP in CH2Cl2 containing 0.1 M TBAP. Sacn rate = 0.1 V/s. ..................................................................................... - 53 -
Figure 3-5 Spectral change of 1.2×10-4 M H2ImTPP from E = 0.00 V to E = +1.15 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 54 -
Figure 3-6 Absorption spectra of 1.2×10-4 M H2ImTPP in CH2Cl2 containing 0.1 M TBAP at 0.00 V. Black and red lines represent H2ImTPP before and after oxidation, respectively. ............................................................................................................ - 55 -
Figure 3-7 Spectral change of 1.2×10-4 M H2ImTPP from E = +1.15 V to E = +1.42 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 55 -
Figure 3-8 Absorption spectra of 1.2×10-4 M H2ImTPP in CH2Cl2 containing 0.1 M TBAP at 0.00 V. Black and red lines represent H2ImTPP before and after oxidation, respectively. ............................................................................................................ - 56 -
Figure 3-9 Spectral change of 1.2×10-4 M H2ImTPP at E = +1.09 V in CH2Cl2 containing 0.1 M TBAP. ........................................................................................................... - 57 -

Figure 3-10 Absorption spectra of 1.2×10-4 M H2ImTPP in CH2Cl2 containing 0.1 M TBAP at 0.00V. Black and red lines represent H2ImTPP before and after oxidation, respectively. ............................................................................................................ - 58 -
Figure 3-11 Spectral change of 1.2×10-4 M H2ImTPP at E = +1.33 V in CH2Cl2 containing 0.1 M TBAP. ........................................................................................................... - 58 -
Figure 3-12 Absorption spectra of 1.2×10-4 M H2ImTPP in CH2Cl2 containing 0.1 M TBAP at 0.00 V. Black and red lines represent H2ImTPP before and after oxidation, respectively. ............................................................................................................ - 59 -
Figure 3-13 Spectral change of 1×10-4 M H2TPP from E = 0.00 V to E = +1.15 V in CH2Cl2 containing 0.1 M TBAP. ......................................................................................... - 60 -
Figure 3-14 Absorption spectra of 1×10-4 M H2TPP in CH2Cl2 containing 0.1 M TBAP at
0.00 V. Black and red lines represent H2TPP before and after oxidation, respectively…

................................................................................................................................ - 61 -

Figure 3-15 Spectral change of 1×10-4 M H2TPP from E = +1.15 V to E = +1.45 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 61 -
Figure 3-16 Absorption spectra of 1×10-4 M H2TPP in CH2Cl2 containing 0.1 M TBAP at
0.00 V. Black and red lines represent H2TPP at 0.00 V and recovery +1.45 V to 0.00 V respectively. ............................................................................................................ - 62 -
Figure 3-17 Spectral change of 1×10-4 M H2TImP from E = 0.00 V to E = +1.38 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 63 -
Figure 3-18 Absorption spectra of 1×10-4 M H2TImP in CH2Cl2 containing 0.1 M TBAP at
0.00 V. Black and red lines represent H2TImP before and after oxidation, respectively.

................................................................................................................................ - 64 -

Figure 3-19 Spectral change of 1×10-4 M H2TImP from E = +1.38 V to E = +1.62 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 64 -

Figure 3-20 Spectral change of 1×10-4 M H2TImP from E = +1.62 V to E = +1.77 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 65 -
Figure 3-21 Absorption spectra of 1×10-4 M H2TImP in CH2Cl2 containing 0.1 M TBAP at
0.00 V. Black and red lines represent H2TImP before and after oxidation, respectively.

................................................................................................................................ - 65 -

Figure 3-22 Cyclic voltammograms of 1.0×10-3 M PD in CH2Cl2 containing 0.1 M TBAP. Sacn rate = 0.1V/s................................................................................................... - 66 -
Figure 3-23 Cyclic voltammetry of 1×10-3 M PD in CH2Cl2 containing 0.1 M TBAP in the presence of various [HIm]. Working electrode: glassy carbon. Scan rate: 0.1 V/s. - 67 -
Figure 3-24 Cyclic voltammograms of 1×10-3 M PD in CH2Cl2 containing 0.1 M TBAP in the presence of various [H2ImTPP]. Working electrode: glassy carbon. Scan rate: 0.1 V/s........................................................................................................................... - 68 -
Figure 3-25 Cyclic voltammograms of 1×10-3M PD in CH2Cl2 containing 0.1 M TBAP in the presence of various [H2TPP]. Working electrode: glassy carbon. Scan rate: 0.1 V/s.
................................................................................................................................ - 69 -

Figure 3-26 Mechanism of H2ImTPP with PD in the electrochemical state. ................. - 70 -
Figure 3-27 Cyclic voltammograms of 1×10-3 M PD in CH2Cl2 containing 0.1 M TBAP in the presence of various [H2TImP]. Scan rate: 0.1 V/s............................................ - 71 -
Figure 3-28 Spectral change of 4×10-4 M PD at E = +0.69 V in CH2Cl2 containing 0.1M TBAP. ..................................................................................................................... - 72 -
Figure 3-29 Absorption spectra of 4×10-4M PD in CH2Cl2 containing 0.1 M TBAP at 0.00V. Black and red lines represent PD before and after oxidation, respectively. ........... - 73 -
Figure 3-30 Spectral change of 4×10-4 M PD at E = +1.21 V in CH2Cl2 containing 0.1M TBAP. ..................................................................................................................... - 73 -
Figure 3-31 Absorption spectra of 4×10-4M PD in CH2Cl2 containing 0.1 M TBAP at +0.69

V. Black and red lines represent PD before and after oxidation, respectively........ - 74 -

Figure 3-32 Absorption spectra of 4×10-4 M PD in CH2Cl2 0.1 M TBAP at 0.00 V. Black and red lines represent PD before and after oxidation, respectively. ..................... - 74 -
Figure 3-33 Spectral change of 4×10-4 M MeIm and 4×10-4 M PD at E = +0.69 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 75 -
Figure 3-34 Spectral change of 1×10-4 M H2TPP and 1×10-4 M PD at E = +0.75 V in
CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 76 -
Figure 3-35 Spectral change of 1×10-4 M H2ImTPPand 1×10-4 M PD at E = +0.75 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 76 -
Figure 3-36 Absorption spectral changes of 1×10-5 M ZnImTPP in CH2Cl2 in the presence of various concentrations of Py. ............................................................................. - 78 -
Figure 3-37 Absorption spectral changes of 1×10-5 M ZnImTPP in CH2Cl2 in the presence of various concentrations of imidazole。............................................................... - 79 -
Figure 3-38 Absorption spectral changes of 1×10-5 M ZnImTPP in CH2Cl2 in the presence of various concentrations of MeIm。..................................................................... - 80 -
Figure 3-39 Spectral change of 2×10-4 M ZnImTPP from E = +0.45 V to E = +0.99 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 82 -
Figure 3-40 Spectral change of 2×10-4 M ZnImTPP from E = +1.02 V to E = +1.35 V in

CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 83 -
Figure 3-41 Spectral change of 2×10-4 M ZnImTPP at E = +0.97 V in CH2Cl2 containing 0.1 M TBAP. ........................................................................................................... - 85 -
Figure 3-42 Absorption spectra of 2×10-4 M ZnImTPP in CH2Cl2 containing 0.1 M TBAP at 0.00V. Black and red lines represent ZnImTPP before and after oxidation, respectively. ............................................................................................................ - 86 -
Figure 3-43 Spectral change of 2×10-4 M ZnImTPP at E = +1.35 V in CH2Cl2 containing

0.1 M TBAP. ........................................................................................................... - 87 -

Figure 3-44 Absorption spectra of 2×10-4 M ZnImTPP in CH2Cl2 containing 0.1 M TBAP at +0.97 V. Black and red lines represent ZnImTPP before and after oxidation, respectively. ............................................................................................................ - 88 -
Figure 3-45 Absorption spectra of 2×10-4 M ZnImTPP in CH2Cl2 containing 0.1 M TBAP at 0.00 V. Black and red lines represent ZnImTPP before and after oxidation, respectively. ............................................................................................................ - 89 -
Figure 3-46 Spectral change of 5×10-5M ZnTPP from E = +0.70 V to E = +1.03 V in CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 90 -
Figure 3-47 Absorption spectra of 5×10-5M ZnTPP in CH2Cl2 containing 0.1 M TBAP at
0.00 V. Black and red lines represent ZnTPP before and after oxidation, respectively…......................................................................................................... - 91 -
Figure 3-48 Spectral change of 5×10-5M ZnTPP from E = +1.03 V to E = +1.30 V in

CH2Cl2 containing 0.1 M TBAP. ............................................................................ - 92 -
Figure 3-49 Absorption spectra of 5×10-5M ZnTPP in CH2Cl2 containing 0.1 M TBAP at
0.00 V. Black and red lines represent ZnTPP before and after oxidation, respectively…......................................................................................................... - 92 -

表目次
Table 1-1 Half-wave potentialsa for oxidation and reduction of Zn(L)TPP in CH2Cl2 containing 0.1 M TBAP and 1.0 M ligand. .............................................................. - 4 -
Table 1-2 Formation constants for ligand addition........................................................... - 5 - Table 1-3 Association constants of ZnOEP with pyridine derivatives ............................. - 6 - Table 1-4 Association constant of ZnTPP with pyridine in various solventsa.................. - 7 -
Table 1-5 Formation constants for imidazole and 2-methylimidazole ligation to various oxidation states of zinc porphyrins ........................................................................... - 8 -
Table 1-6 Half-wave potentials for oxidation and reduction of 1.0 mM zinc porphyrins in the presence of 1.0 mM imidazole ........................................................................... - 8 -
Table 1-7 TBPH oxidation with PPAA catalysed by iron porphyrins .............................- 11 - Table 1-8 Hydroxylation of adamantane with PPAA by iron porphyrin catalysis ......... - 12 -
Table 1-9 Oxidation potential of PD, ZnTMP and ZnTMP-PD in the absence and presence of N-methylimidazole. ............................................................................................ - 19 -
Table 1-10 Oxidation potentials of PD, ZnTMP, ZnTMP-PD, ZnTMP-Ph-PD, and

ZnTMP-Ph2-PD in the absence or presence of HIm............................................... - 24 - Table 1-11 Binding constants for HIm with PD, ZnTMP, ZnTMP-PD, ZnTMP-Ph-PD, and
ZnTMP-Ph2-PD in various oxidation states. .......................................................... - 24 -
Table 2-1 Pyridine 與 ZnImTPP 溶液配置方法............................................................ - 34 -

Table 2-2 imidazole 與 ZnImTPP 的配置方法 ............................................................. - 39 -

Table 2-3 MeIm 與 ZnImTPP 的配置方法 ................................................................... - 43 - Table 3-1 ZnImTPP 與各配位基光譜滴定的 n 值與 Kf0。 ......................................... - 81 -

流程目次

Scheme 1-1 Reaction pathway of PPAA and TBPH in the presence of iron(III) porphyrin…

.................................................................................................................................- 11 -

Scheme 1-2 The fence mechanism of eletrochmically induced hydrogen bonding between phenylenediamine and pyridines. ........................................................................... - 16 -
Scheme 1-3 The nine numbered mechanism of electrochemically induced hydrogen bonding between phenylenediamine and ethanol................................................... - 17 -
Scheme 1-4 Electrochemically controlled ligation of MeIm with ZnTMP-PD. ............ - 19 -


1. 陳錦池, Chemistry (J. Chin. Chem. Soc-Taip.). 2000, 58, 447-448
2. L. R. Milgrom, The Colours of Life.OUP: Oxford, 1997
3. 麥綺倫;葉鎮孙,不對稱金屬紫質的催化反應. Chemistry (J. Chin. Chem. Soc-Taip.).
2005, 63, 526-540.
4. J. Fuhrhop, K. M. Kadish, and D. G. Davis, J. Am.Chem. Soc. 1973, 17, 1124.
5. K. M. Kadish and M. M. Morrison, Bioinorg. Chem. 1977, 7, 107.
6. K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexs,
Academic Press: London, 1992.
7. K. M. Kadish and L. A. Bottomley, Inorg. Chem. 1980, 19, 832.
8. K. M. Kadish, L. A. Bottomley, and J. S. Cheng, J. Am. Chem. Soc. 1978, 100, 2731.
9. C. Chatterjee, M. H. Chisholm, Inorg. Chem. 2011, 50, 4481.
10. M. G. Walter, C. C. Wamser, J. Phys. Chem. C. 2010, 114, 7563.
11. S. Nimri, E. Keinan, J. Am. Chem. Soc. 1999, 121, 8978.
12. J. Skonieczny, L. Latos-Graz˙y’nski, L. Szterenberg, Inorg. Chem. 2009, 48, 7394.
13. K. Steenkeste, F. Tfibel, M. Perr’ee-Fauvet and R. Briandet, J. Phys. Chem. A. 2010,
114, 3334.
14. K. M. Kadish, E. Van Caemelbecke, J. Sol. State. Electrochem. 2003, 7, 254.
15. K. M. Kadish, R. K. Rhodes, Inorg. Chem. 1981, 20, 2961-2966.
16. D. Dolphin, Z. Muljiani, K. Rousseau, D. C. Borg, J. Fajer, R. H. Felton, Ann. N. Y.
Acad. Sci. 1973, 206, 177-200.
17. Y. J. Tu, H. C. Cheng, I. Chao, C. R. Cho, R. J. Cheng, Y. O. Su, J. Phys. Chem.
A. 2012, 116, 1632-1637.
18. G. M. Brown, F. R. Hopf, J. A. Ferguson, T. J. Meyer, and D. G. Whitten, J. Am.
- 95 -
Chem. Soc. 1973, 95, 5939.
19. N. Farrell, D. H. Dolphin, and B. R. James, J. Am. Chem. Soc. 1978, 100, 324.
20. J. Fajer, D. C. Borg, A. Forman, D. Dolphin, and R. H. Felton, J. Am. Chem. Soc.
1970, 92, 3451.
21. C. Mengersen, J. Subbramanian, J. H. Fuhrhop, and K. M. Smith, Z. Naturforsch.
1974, 429, 1827.
22. C. H. Kirksry, P. Hambright, and C. B. Storm, Inorg. Chem. 1969, 8, 2141.
23. A. Satake, and Y. Kobuke, Tetrahedron. 2005, 61, 13-41.
24. D. Furutsu, A. Satake, and Y. Kobuke, Inorg. Chem. 2005, 44 , 4460-4462.
25. Y. Miyazaki, A. Satake, Y. Kobuke, J. Mol. Catal. A: Chem. 2008, 283, 129-139.
26. Y. C. Chung, Y. J. Tu, S. H. Lu, W. C. Hsu, K. Y. Chiu, and Y. O. Su, Org.
Lett. 2011, 13, 2826-2829.
27. 鍾怡君, 九十五年國立暨南國際大學碩士論文, 2006.
28. C. L. Lin, M. Y. Fang and S. H. Cheng, J. Electroanal. Chem. 2002, 531, 155.
29. K. Y. Chiu and Y. O. Su, Chem. Commun. 2009, 2884-2886.
30. H. C. Cheng, P. Y. Chen, and Y. O. Su, Dalton Trans. 2014, 43, 1424.
31. Y. Miyazaki, A. Satake, Y. Kobuke, J. Mol. Catal. A: Chem. 2008, 283, 129–139.
32. D. H. Tjahjono, T. Akutsu, N. Yoshioka, H. Inoue, Biochimica. et. Biophysica. Acta.
1999, 1472, 333-343.
33. D. Furutsu, A. Satake, and Y. Kobuke, Inorg. Chem. 2005, 44, 4460-4462.
34. 林敬浤, 九十八年國立暨南國際大學碩士論文, 2009.
35. 黃智彥, 九十二年國立暨南國際大學碩士論文, 2003.
36. 郭子祺, 一Ο 一年國立暨南國際大學碩士論文, 2013.
37. M. Shirakawa, S. Kawano, N. Fujita, K. Sada, and S. Shinka, J. Org. Chem. 2003, 68,
5037-5044.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊