跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.218) 您好!臺灣時間:2024/11/07 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁華展
研究生(外文):Liang, Hua-Chan
論文名稱:可中斷工作於不等速平行機台之特定時段排程問題
論文名稱(外文):Scheduling preemptive jobs to specific time intervals of uniform parallel machines
指導教授:洪暉智
指導教授(外文):Hung, Hui-Chih
口試委員:巫木誠陳文智
口試委員(外文):Wu, Muh-CherngChen, Wen-Chih
口試日期:2015-06-10
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:20
中文關鍵詞:工作排程可中斷工作不等速平行機台時段完工時間
外文關鍵詞:Job schedulingpreemptive jobuniform machinetime intervalcompletion time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討可中斷工作於多不等速平行機台排程問題,其中各機台具有任意特定可行時段。我們考慮三個不同的目標─ (1)最大化具有特定可行時段機台的基本處理時間,(2)最小化最後一個工作的完工時間,和(3)最小化特定機台的完工時間。我們針對整數和有理數的處理時間建構混合整數規劃數學模型,並根據Optimum Finishing Time(OFT)概念,建構了三個對應特定目標的最佳解演算法,且都可以在多項式時間內達成。
We consider the scheduling problem of uniform parallel machines with preemptive jobs, where machines have specific available time intervals. Our study considers arbitrary time intervals, Integer and Rational job processing time, and then formulates the Mixed Integer Programming models. For our problem, we consider three different objectives─(1) to maximize the basic processing time assigned to machines with specific available time intervals, (2) to minimize the completion time of the last job, and (3) to minimize the completion time of the last job on some specific machines. Finally, we develop three algorithms based on Optimum Finishing Time (OFT) concept which solve the three objectives in polynomial time.
摘要 i
Abstract ii
誌謝 iii
Contents iv
Table Contents v
Figure Contents vi
1. Introduction 1
2. Literature review 5
2.1 The review of outsourcing problems 5
2.2 The P(s) problem 5
2.3 Optimum Finishing Time concept 6
2.4 Feature of our research 9
3. Problem formulations 10
3.1 Problem statement and assumptions 10
3.2 Notation 11
3.3 Objectives 11
3.4 Problem formulations 11
4. Solution approaches 15
5. Conclusions and future research 19
References 20

Chen, Z. L., and Powell, W. B., 1999. Solving parallel machine scheduling problems by column generation. INFORMS Journal on Computing 11, 78-94.
Coman, A., and Ronen, B., 2000. Production outsourcing: a linear programming model for the theory-of-constraints. International Journal of Production Research 38, 1631-1639.
Feenstra, R. C., and Hanson, G. H., 1995. Foreign investment, outsourcing and relative wages. National bureau of economic research.
Gonzalez, T., and Sahni, S., 1978. Preemptive scheduling of uniform processor systems. Journal of the ACM (JACM) 25, 92-101.
Lawler, E. L., and Labetoulle, J., 1978. On preemptive scheduling of unrelated parallel processors by linear programming. Journal of the ACM (JACM) 25, 612-619.
Lee, S. J. J., and Sundararajan, N., 2010. Microfabrication for microfluidics. Artech House.
Leung, J. Y. T., Lee, C. Y., Ng, C. W., and Young, G. H., 2008. Preemptive multiprocessor order scheduling to minimize total weighted flowtime. European Journal of Operational Research 190, 40-51.
Liao, C. J., and Lin, C. H., 2003. Makespan minimization for two uniform parallel machines. International Journal of Production Economics 84, 205-213.
Lin, C. H., and Liao, C. J., 2008. Makespan minimization for multiple uniform machines. Computers &; Industrial Engineering 54, 983-992.
Mokhtari, H., Abadi, I. N. K., and Amin-Naseri, M. R., 2012. Production scheduling with outsourcing scenarios: a mixed integer programming and efficient solution procedure. International Journal of Production Research 50, 5372-5395.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top