|
[1] A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, "Applications of breath gas analysis in medicine," International Journal of Mass Spectrometry, vol. 239, pp. 227-233, 2004. [2] P. Montuschi, S. A. Kharitonov, and P. J. Barnes, "Exhaled carbon monoxide and nitric oxide in COPD," CHEST Journal, vol. 120, pp. 496-501, 2001. [3] M. Westhoff, P. Litterst, S. Maddula, B. Bödeker, and J. Baumbach, "Statistical and bioinformatical methods to differentiate chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control by breath analysis using ion mobility spectrometry," International Journal for Ion Mobility Spectrometry, vol. 14, pp. 139-149, 2011. [4] C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, "Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization," Journal of Chromatography B, vol. 810, pp. 269-275, 2004. [5] P. Španěl, K. Dryahina, A. Rejšková, T. W. Chippendale, and D. Smith, "Breath acetone concentration; biological variability and the influence of diet," Physiological measurement, vol. 32, p. N23, 2011. [6] P. Pradyot, "Handbook of inorganic chemicals," 2002. [7] B. Timmer, W. Olthuis, and A. v. d. Berg, "Ammonia sensors and their applications—a review," Sensors and Actuators B: Chemical, vol. 107, pp. 666-677, 2005. [8] N. A. Campbell and J. B. Reece, "Biology. Internasional Edition," ed: San Fransisco, Boston New York: Pearson Education, Inc, publishing as Benjamin Cummings, 2002. [9] C. Shimamoto, I. Hirata, and K. Katsu, "Breath and blood ammonia in liver cirrhosis," Hepato-gastroenterology, vol. 47, pp. 443-445, 1999. [10] C. Li, D. Zhang, B. Lei, S. Han, X. Liu, and C. Zhou, "Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors," The Journal of Physical Chemistry B, vol. 107, pp. 12451-12455, 2003. [11] J. Law and J. Thong, "Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration," Nanotechnology, vol. 19, p. 205502, 2008. [12] N. Zhang, K. Yu, L. Li, and Z. Zhu, "Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod," Applied Surface Science, vol. 254, pp. 5736-5740, 2008. [13] S. DuBois, S. Eng, R. Bhattacharya, S. Rulyak, T. Hubbard, D. Putnam, et al., "Breath ammonia testing for diagnosis of hepatic encephalopathy," Digestive diseases and sciences, vol. 50, pp. 1780-1784, 2005. [14] A. Joshi, D. Aswal, S. Gupta, J. Yakhmi, and S. Gangal, "ZnO-nanowires modified polypyrrole films as highly selective and sensitive chlorine sensors," Applied Physics Letters, vol. 94, pp. 103115-103115-3, 2009. [15] N. Peng, Q. Zhang, C. L. Chow, O. K. Tan, and N. Marzari, "Sensing mechanisms for carbon nanotube based NH3 gas detection," Nano letters, vol. 9, pp. 1626-1630, 2009. [16] M. Penza, R. Rossi, M. Alvisi, G. Cassano, and E. Serra, "Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications," Sensors and Actuators B: Chemical, vol. 140, pp. 176-184, 2009. [17] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, et al., "Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection," Nano letters, vol. 3, pp. 347-351, 2003. [18] N. H. Quang, M. Van Trinh, B.-H. Lee, and J.-S. Huh, "Effect of NH< sub> 3 gas on the electrical properties of single-walled carbon nanotube bundles," Sensors and Actuators B: Chemical, vol. 113, pp. 341-346, 2006. [19] G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, et al., "Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet," Atmospheric Environment, vol. 36, pp. 1799-1810, 2002. [20] H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007. [21] P. Lin and F. Yan, "Organic Thin‐Film Transistors for Chemical and Biological Sensing," Advanced materials, vol. 24, pp. 34-51, 2012. [22] J. T. Mabeck and G. G. Malliaras, "Chemical and biological sensors based on organic thin-film transistors," Analytical and bioanalytical chemistry, vol. 384, pp. 343-353, 2006. [23] L. Torsi, A. Dodabalapur, L. Sabbatini, and P. Zambonin, "Multi-parameter gas sensors based on organic thin-film-transistors," Sensors and Actuators B: Chemical, vol. 67, pp. 312-316, 2000. [24] H.-W. Zan, M.-Z. Dai, T.-Y. Hsu, H.-C. Lin, H.-F. Meng, and Y.-S. Yang, "Porous organic TFTs for the applications on real-time and sensitive gas sensors," Electron Device Letters, IEEE, vol. 32, pp. 1143-1145, 2011. [25] 賴淳熙, "利用含氮官能基修飾多晶矽奈米線場效電晶體表面對氨氣感測之影響," 交通大學顯示科技研究所學位論文, 2013. [26] G. Yuan, "The technology and application of powder surface modification [J]," Chemical Industry and Engineering Progress, vol. 1, pp. 33-41, 1994. [27] J. F. Tannaci, M. Noji, J. L. McBee, and T. D. Tilley, "9, 10-Disubstituted octafluoroanthracene derivatives via palladium-catalyzed cross-coupling," The Journal of organic chemistry, vol. 73, pp. 7895-7900, 2008. [28] H.-C. Lin, M.-H. Lee, C.-J. Su, T. Huang, C. Lee, and Y.-S. Yang, "A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel," Electron Device Letters, IEEE, vol. 26, pp. 643-645, 2005. [29] C.-H. Kuo, H.-C. Lin, I.-C. Lee, H.-C. Cheng, and T.-Y. Huang, "A Novel Scheme for Fabricating CMOS Inverters With Poly-Si Nanowire Channels," Electron Device Letters, IEEE, vol. 33, pp. 833-835, 2012. [30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001. [31] D. A. Neamen and B. Pevzner, Semiconductor physics and devices: basic principles vol. 3: McGraw-Hill New York, 2003. [32] L. Dobrescu, M. Petrov, and C. Ravariu, "Threshold voltage extraction methods for MOS transistors," in Semiconductor Conference, 2000. CAS 2000 Proceedings. International, 2000, pp. 371-374. [33] H.-C. Lin, C.-J. Su, C.-Y. Hsiao, Y.-S. Yang, and T.-Y. Huang, "Water passivation effect on polycrystalline silicon nanowires," Applied Physics Letters, vol. 91, p. 202113, 2007. [34] C. S. Guo, L. B. Luo, G. D. Yuan, X. B. Yang, R. Q. Zhang, W. J. Zhang, et al., "Surface passivation and transfer doping of silicon nanowires," Angewandte Chemie, vol. 121, pp. 10080-10084, 2009. [35] A. Miranda-Duran, X. Cartoixa, M. Cruz Irisson, and R. Rurali, "Molecular doping and subsurface dopant reactivation in Si nanowires," Nano letters, vol. 10, pp. 3590-3595, 2010. [36] J.-H. Ahn, S.-J. Choi, J.-W. Han, T. J. Park, S. Y. Lee, and Y.-K. Choi, "Double-gate nanowire field effect transistor for a biosensor," Nano letters, vol. 10, pp. 2934-2938, 2010. [37] C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, et al., "Novel poly-silicon nanowire field effect transistor for biosensing application," Biosensors and Bioelectronics, vol. 24, pp. 1223-1229, 2009. [38] C.-H. Lin, C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, et al., "Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor," Chem. Commun., pp. 5749-5751, 2008.
|