跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/05/31 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭韋廷
研究生(外文):Kuo, Wei-Ting
論文名稱:利用含氟官能基對多晶矽奈米線場效電晶體表面改質之氨氣感測
論文名稱(外文):Enhancing Ammonia Sensing Ability of Poly-Si Nanowires FETs by Surface Modified Fluorine-containing Functional Groups
指導教授:陳皇銘徐嘉鴻徐嘉鴻引用關係
指導教授(外文):Chen, Huang-Ming PhilipHsu, Chia-Hung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:多晶矽奈米線場效電晶體氨氣感測
外文關鍵詞:poly-Si NWs FETammonia sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對含氟化合物修飾多晶矽奈米線場效電晶體的表面做氨氣的氣體感測,由於氟和氨氣之間會有氫鍵的產生,因此利用含氟官能基的有機材料來修飾奈米線將可以提升對於氨氣的感測能力,本實驗對兩種不同含氟官能基材料作探討,分別是F8-TFMPA跟F8-TMPEA。並利用兩種修飾方式來成長修飾層,分別是旋轉塗佈修飾法和熱蒸鍍法。另外也探討在不同的相對濕度下電晶體電性的變化。在環境濕度為40%,氨氣濃度為0.5 ppm的條件下,利用旋轉塗佈修飾的元件感測能力提升到了1.07,而利用熱蒸鍍修飾的元件則是提升到了1.30。另外熱蒸鍍修飾的材料在環境濕度為55%的條件下仍然可以達到1.14。由數據顯示出水氣和氨氣在感測過程中是互為競爭的關係。也就是當濕度愈高時,原件對於氨氣的感測能力就愈低。而F8-TMPEA這一個修飾材料對於感測能力上並無太大的提升效果。另外所有的元件都可以在低臨界電壓下操作,因此非常適合在醫學中對於患有肝病等慢性病的氨氣檢測。
This research is focused on the fluorine atoms containing organic compounds surface modified poly-Si nanowires FETs ammonia gas sensor. Due to the strong hydrogen bonding with ammonia, the sensitivity of fluorine containing organic compounds modified nanowires can be increased. Two different compounds, 1,2,3,4,5,6,7,8-Octafluoro-9,10-bis
[4-(trifluoromethyl)phenyl]anthracene (F8-TFMPA) and 1,2,3,4,5,6,7,8-Octafluoro-9,10-bis[2-(2,4,6-trimethylphenyl)ethynyl]anthracene (F8-TMPEA), were investigated. The surface modified thin films were prepared by either solution or thermal deposition processes. The relative humidity was also discussed. In particular, the sensing ability of F8-TFMPA modified NWs in 40% Rh. under 0.5 ppm ammonia is increased from 1.07 (solution process) to 1.30 (thermal deposition). In addition, the sensing ability of the modified device prepared by thermal deposition can reach 1.14 at 55% Rh. The water molecular and ammonia showed competing character in the sensing results. The higher the humidity, the lower the sensitivity is. The F8-TFMPA didn’t show the strong tendency of sensitivity enhancement. All devices can be operated under low critical voltage. As a result, the device is suitable for detecting ammonia in chronic liver disease patients.

第一章 序論 1
1-1 研究背景 1
1-2 氣體感測 2
1-2-1 氣體感測的重要性 2
1-2-2 氣體感測器的比較 5
1-3 表面改質 7
1-3-1 表面修飾方法及影響 7
1-3-2 表面修飾之材料 8
1-4 研究動機與目標 10
1-5 論文架構 10
第二章 實驗原理與感測機制 11
2-1 多晶矽奈米線場效電晶體(Poly-Si NW FETs) 11
2-2 多晶矽奈米線場效電晶體操作原理 12
2-3 電晶體參數定義與影響因子 14
2-3-1 載子遷移率(mobility) 14
2-3-2 次臨界擺幅(subthreshold swing) 15
2-3-3 臨界電壓(threshold voltage) 16
2-3-4 電流開關比(on/off ratio) 17
2-4 多晶矽奈米線場效電晶體感測機制 18
2-4-1 鈍化效果(Passivation effect) 18
2-4-2 載子注入(doping) 19
2-4-3 雙閘極電極感測(Dual gate) 20
第三章 實驗製程與量測機台 22
3-1 多晶矽奈米線場效電晶體製作流程 22
3-2 多晶矽奈米線場效電晶體表面改質處理過程 24
3-2-1 電晶體清洗流程 24
3-2-2 表面修飾處理 24
3-3 實驗機台 25
3-3-1 旋轉塗佈機台(Spin coater) 25
3-3-2 熱蒸鍍機台(Thermal coater) 26
3-3-3 原子力顯微鏡(AFM) 26
3-3-3 感應耦合電漿質譜分析儀(ICP-MS) 27
3-3-4 小型實驗製程設備 28
3-4 氨氣感測系統 29
3-4-1 氨氣量測相關儀器 29
第四章 實驗結果與討論 32
4-1 修飾層厚度及厚度對電晶體電性之影響 32
4-1-1 修飾層厚度測試 32
4-1-2 修飾層對元件電性的影響 35
4-2 氨氣感測之量測過程 40
4-3 氨氣感測實驗 42
4-3-1 未修飾一般元件的氨氣感測 42
4-3-2 F8-TFMPA修飾元件後之靈敏度變化 44
4-3-3 F8-TMPEA修飾元件後之靈敏度變化 48
4-3-4 不同環境濕度下感測之比較 50
4-4 結論 61
第五章 結論與未來發展 63
5-1 結果與討論 63
5-2 未來發展 64
參考文獻 65

[1] A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, and S. Mechtcheriakov, "Applications of breath gas analysis in medicine," International Journal of Mass Spectrometry, vol. 239, pp. 227-233, 2004.
[2] P. Montuschi, S. A. Kharitonov, and P. J. Barnes, "Exhaled carbon monoxide and nitric oxide in COPD," CHEST Journal, vol. 120, pp. 496-501, 2001.
[3] M. Westhoff, P. Litterst, S. Maddula, B. Bödeker, and J. Baumbach, "Statistical and bioinformatical methods to differentiate chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control by breath analysis using ion mobility spectrometry," International Journal for Ion Mobility Spectrometry, vol. 14, pp. 139-149, 2011.
[4] C. Deng, J. Zhang, X. Yu, W. Zhang, and X. Zhang, "Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization," Journal of Chromatography B, vol. 810, pp. 269-275, 2004.
[5] P. Španěl, K. Dryahina, A. Rejšková, T. W. Chippendale, and D. Smith, "Breath acetone concentration; biological variability and the influence of diet," Physiological measurement, vol. 32, p. N23, 2011.
[6] P. Pradyot, "Handbook of inorganic chemicals," 2002.
[7] B. Timmer, W. Olthuis, and A. v. d. Berg, "Ammonia sensors and their applications—a review," Sensors and Actuators B: Chemical, vol. 107, pp. 666-677, 2005.
[8] N. A. Campbell and J. B. Reece, "Biology. Internasional Edition," ed: San Fransisco, Boston New York: Pearson Education, Inc, publishing as Benjamin Cummings, 2002.
[9] C. Shimamoto, I. Hirata, and K. Katsu, "Breath and blood ammonia in liver cirrhosis," Hepato-gastroenterology, vol. 47, pp. 443-445, 1999.
[10] C. Li, D. Zhang, B. Lei, S. Han, X. Liu, and C. Zhou, "Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors," The Journal of Physical Chemistry B, vol. 107, pp. 12451-12455, 2003.
[11] J. Law and J. Thong, "Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration," Nanotechnology, vol. 19, p. 205502, 2008.
[12] N. Zhang, K. Yu, L. Li, and Z. Zhu, "Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod," Applied Surface Science, vol. 254, pp. 5736-5740, 2008.
[13] S. DuBois, S. Eng, R. Bhattacharya, S. Rulyak, T. Hubbard, D. Putnam, et al., "Breath ammonia testing for diagnosis of hepatic encephalopathy," Digestive diseases and sciences, vol. 50, pp. 1780-1784, 2005.
[14] A. Joshi, D. Aswal, S. Gupta, J. Yakhmi, and S. Gangal, "ZnO-nanowires modified polypyrrole films as highly selective and sensitive chlorine sensors," Applied Physics Letters, vol. 94, pp. 103115-103115-3, 2009.
[15] N. Peng, Q. Zhang, C. L. Chow, O. K. Tan, and N. Marzari, "Sensing mechanisms for carbon nanotube based NH3 gas detection," Nano letters, vol. 9, pp. 1626-1630, 2009.
[16] M. Penza, R. Rossi, M. Alvisi, G. Cassano, and E. Serra, "Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications," Sensors and Actuators B: Chemical, vol. 140, pp. 176-184, 2009.
[17] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, et al., "Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection," Nano letters, vol. 3, pp. 347-351, 2003.
[18] N. H. Quang, M. Van Trinh, B.-H. Lee, and J.-S. Huh, "Effect of NH< sub> 3 gas on the electrical properties of single-walled carbon nanotube bundles," Sensors and Actuators B: Chemical, vol. 113, pp. 341-346, 2006.
[19] G. H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, et al., "Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet," Atmospheric Environment, vol. 36, pp. 1799-1810, 2002.
[20] H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[21] P. Lin and F. Yan, "Organic Thin‐Film Transistors for Chemical and Biological Sensing," Advanced materials, vol. 24, pp. 34-51, 2012.
[22] J. T. Mabeck and G. G. Malliaras, "Chemical and biological sensors based on organic thin-film transistors," Analytical and bioanalytical chemistry, vol. 384, pp. 343-353, 2006.
[23] L. Torsi, A. Dodabalapur, L. Sabbatini, and P. Zambonin, "Multi-parameter gas sensors based on organic thin-film-transistors," Sensors and Actuators B: Chemical, vol. 67, pp. 312-316, 2000.
[24] H.-W. Zan, M.-Z. Dai, T.-Y. Hsu, H.-C. Lin, H.-F. Meng, and Y.-S. Yang, "Porous organic TFTs for the applications on real-time and sensitive gas sensors," Electron Device Letters, IEEE, vol. 32, pp. 1143-1145, 2011.
[25] 賴淳熙, "利用含氮官能基修飾多晶矽奈米線場效電晶體表面對氨氣感測之影響," 交通大學顯示科技研究所學位論文, 2013.
[26] G. Yuan, "The technology and application of powder surface modification [J]," Chemical Industry and Engineering Progress, vol. 1, pp. 33-41, 1994.
[27] J. F. Tannaci, M. Noji, J. L. McBee, and T. D. Tilley, "9, 10-Disubstituted octafluoroanthracene derivatives via palladium-catalyzed cross-coupling," The Journal of organic chemistry, vol. 73, pp. 7895-7900, 2008.
[28] H.-C. Lin, M.-H. Lee, C.-J. Su, T. Huang, C. Lee, and Y.-S. Yang, "A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel," Electron Device Letters, IEEE, vol. 26, pp. 643-645, 2005.
[29] C.-H. Kuo, H.-C. Lin, I.-C. Lee, H.-C. Cheng, and T.-Y. Huang, "A Novel Scheme for Fabricating CMOS Inverters With Poly-Si Nanowire Channels," Electron Device Letters, IEEE, vol. 33, pp. 833-835, 2012.
[30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[31] D. A. Neamen and B. Pevzner, Semiconductor physics and devices: basic principles vol. 3: McGraw-Hill New York, 2003.
[32] L. Dobrescu, M. Petrov, and C. Ravariu, "Threshold voltage extraction methods for MOS transistors," in Semiconductor Conference, 2000. CAS 2000 Proceedings. International, 2000, pp. 371-374.
[33] H.-C. Lin, C.-J. Su, C.-Y. Hsiao, Y.-S. Yang, and T.-Y. Huang, "Water passivation effect on polycrystalline silicon nanowires," Applied Physics Letters, vol. 91, p. 202113, 2007.
[34] C. S. Guo, L. B. Luo, G. D. Yuan, X. B. Yang, R. Q. Zhang, W. J. Zhang, et al., "Surface passivation and transfer doping of silicon nanowires," Angewandte Chemie, vol. 121, pp. 10080-10084, 2009.
[35] A. Miranda-Duran, X. Cartoixa, M. Cruz Irisson, and R. Rurali, "Molecular doping and subsurface dopant reactivation in Si nanowires," Nano letters, vol. 10, pp. 3590-3595, 2010.
[36] J.-H. Ahn, S.-J. Choi, J.-W. Han, T. J. Park, S. Y. Lee, and Y.-K. Choi, "Double-gate nanowire field effect transistor for a biosensor," Nano letters, vol. 10, pp. 2934-2938, 2010.
[37] C.-Y. Hsiao, C.-H. Lin, C.-H. Hung, C.-J. Su, Y.-R. Lo, C.-C. Lee, et al., "Novel poly-silicon nanowire field effect transistor for biosensing application," Biosensors and Bioelectronics, vol. 24, pp. 1223-1229, 2009.
[38] C.-H. Lin, C.-Y. Hsiao, C.-H. Hung, Y.-R. Lo, C.-C. Lee, C.-J. Su, et al., "Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor," Chem. Commun., pp. 5749-5751, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top