跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/03 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佳祐
研究生(外文):Lee, Chia-Yu
論文名稱:氮化鎵化合物光電元件優化之研究
論文名稱(外文):The study of optimizing GaN-based optoelectronic devices
指導教授:郭浩中郭浩中引用關係紀國鐘紀國鐘引用關係
指導教授(外文):Kuo, Hao-ChungChi, Gou-Chung
口試委員:張守進林瑞明賴韋志李柏璁林建中
口試委員(外文):Chang, Shoou-JinnLin, Ray MingLai, Wei-ChihLee, Po-TsungLin, chien-chung
口試日期:2015-01-30
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:76
中文關鍵詞:發光二極體垂直型發光二極體覆晶型發光二極體高速電子遷移率場效電晶體
外文關鍵詞:light emitting diodevertical LEDflip-chip LEDHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著發光二極體固態照明及高頻電子元件的開發及需求,寬能隙的三族氮化物材料因具有廣泛的波段涵蓋範圍,高電子飽和速度、熱穩定性佳、高崩潰電壓等優點而成為相當熱門的研究材料;但在三族氮化物磊晶成長的過程當中存在一些無可避免的的問題,如磊晶層與基板間晶格不匹配的現象造成晶體缺陷以至於使得非輻射復合效應增加,其結構應力所衍生的內建極化場及其效應皆已被證實會影響到光電元件的效能。因此,本論文主要致力於提升晶體品質、降低結構缺陷與增加光萃取效率,進而提升光電相關元件的效率。
本研究中,將針對上述的情況分別提出解決的辦法。首先在提升晶體品質與增加光萃取效率方面,利用皇冠型圖樣化基板與在基板上製作二氧化矽圖樣化結構來成長發光元件,使堆疊缺陷轉彎,不再向上串升,提升晶體品質,改善發光元件效率,其圖形化結構亦能增強光萃取效率。在電流20毫安培下,皇冠型圖樣化基板與在基板上製作二氧化矽圖樣化結構之發光二極體分別使光輸出增加了32%與62%相較於傳統發光二極體;由於常用來做為氮化鎵元件成長的藍寶石基板本身的散熱不佳,在高電流注入的使用上會產生熱累積而使得元件效率下降或毀損,為改善此現象,很多研究改採將藍寶石基板移除之垂直型發光元件,而移除的方式不外乎以高功率紫外光雷射或化學蝕刻法,但這二種方式前者設備昂貴,後者易發生過蝕或蝕刻不足的控制難度,其共通的缺陷是易造成元件損傷。於是我們提出一種方便又傷害低的自然力剝除方法,此方法提升了30%光功率輸出(在350毫安培下)也將製程良率由78.3%提升至91.3% (Ir < 0.2μA at -5V) 相較於使用雷射撥離之發光垂直型二極體;在紫外光波段的開發上,我們使用反應電漿鍍膜技術沉積高品質之氮化鋁層,取代傳統磊晶技術所使用的低溫氮化鎵成核層,減少紫外光易被缺陷吸收的缺點與減少磊晶時產生的螺紋線狀差排缺陷,提升元件發光效率。在電流350毫安培下,與傳統使用低溫氮化鎵成核層之發光二極體多出32%的光功率輸出;在功率元件上,使用反應電漿鍍膜技術沉積之氮化鋁層成核層成長高品質氮化鋁鎵/氮化鎵高電子遷移率場效電晶體結構,並成功製作出適用於可見光通訊發射端模組之高功率氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件;在高電子遷移率場效電晶體元件熱管理上,我們使用內嵌式單層石墨烯來增加熱擴散,在120度下使得飽和汲極電流衰減約28%。
在本論文中,我們提出數種磊晶結構及方法以提升氮化鎵光電元件之效率,期許相關研究的成果能有助於氮化鎵系列光電元件的發展與進步。

With developments and requirements of solid-state lightings and high-frequency electronic devices, wide-band gap III-nitrides become a popular materials due to broad wavelength range. However, unavoidable issue existed during the growth process of III-nitride material, such like increment of non-radiative recombination effect owing to crystal defects which is caused by the lattice mismatch between epilayers and substrate. Furthermore, the strain-induced polarization field and its effects conspicuously diminished the LED performance, leading to the poor light emitting efficiency. The efficiency of optoelectronic devices have been affected by structure strain and build-in polarization field.
Therefore, the thesis focus on improving crystal quality of optoelectronic devices, reducing structure defects and increasing ligh extraction efficiency. First, growing light emitting devices on crown-shaped pattern sapphire substrate and cone-shaped SiO2 patterned template to bend stacking faults that made less defects attached device structure to improve crystal quality and efficiency of light emitting devices, and the pattern structure also increased the light extracted efficiency. At 20 mA driving current, the light output power of LEDs grown on crown-shaped pattern sapphire substrate and cone-shaped SiO2 patterned template, compared with LEDs grown on planar sapphire substrate, has 32% and 62% enhancement, respectively. Owing to poor thermal conductivity of sapphire substrate which is widely used to be a substrate for growing GaN-based devices, a thermal accumulation makes the efficiency reduction and device damage in high current injection. Generally, the techniques of laser lift-off (LLO) and chemical lift-off (CLO) have been adopted for removing sapphire substrate to build up a VLED structure. Unfortunately, LLO cost higher and CLO is difficult to maintain the etching uniformity and crystal quality simultaneously. In this work, we demonstrate a natural substrate lift-off (NSLO) technique for fabricating high-quality GaN-based VLEDs. The light output power of VLED with NSLO was increased 30% (@350 mA) and yield of the leakage current (Ir < 0.2μA at -5V) was also improved from 78.3% to 91.3% compared to that of VLED with LLO. For UVLED, we utilized ex-situ reactive plasma deposited (RPD) AlN nucleation layer to instead of low temperature GaN(LT-GaN) on patterned sapphire substrate (PSS), which exhibited threading dislocation density (TDD) can be reduced. Furthermore, we demonstrated the light output power of the LEDs with the RPD AlN nucleation layer was increased 32% (@350 mA) than that of LEDs grown on PSS with conventional LT-GaN nucleation layer. In power devices, we successfully grew high quality the AlGaN/GaN high-electron-mobility transistor (HEMT) structure with RPD-AlN on planar sapphire substrat by MOCVD and produed high power AlGaN/GaN HEMT device which was suitable for visible light communication (VLC) transmitter module. For the thermal issue of HEMT devices, we use a single embedded graphene layer to improve heat spreading. The decreasing rate of Idss was as small as 28%.
In this thesis, several effective approaches in order to enhance the optoelectronic characteristics have been proposed, and expected that these researches could contribute to the development and progress for GaN-based optoelectronic components.

Chinese Abstract---i
English Abstract---iii
Acknowledgement---v
Table of Contents---vi
List of Tables---viii
List of Figures---ix
Chapter 1 Introduction---1
1.1 Ⅲ-Nitride Material Properties---1
1.2 Overview of LED development &; application---2
1.3 Smart lighting-Visible Light Communications (VLC)---4
1.4 Organization of this dissertation---6
1.5 Reference---7
Chapter 2 Horizontal Structure of Light emitting diodes---9
2.1 History of patterned sapphire substrate---9
2.2 GaN-Based Light-Emitting Diodes Using Crown-Shaped Patterned Sapphire Substrates---10
2.2.1 Fabrication---11
2.2.2 Result and discussion---13
2.2.3 Summary---18
2.3 GaN-Based Light-Emitting Diodes Grown on Cone-Shaped SiO2 Patterned Template---19
2.3.1 Fabrication---20
2.3.2 Result and discussion---22
2.3.3 Summary---28
2.4 Reference---29
Chapter 3 Vertical structure of Light emitting diodes---32
3.1 Natural substrate lift-off technique for vertical light-emitting diodes---33
3.2 Fabrication---33
3.3 Result and discussion---38
3.4 Summary---41
3.5 Reference---41
Chapter 4 Flip-chip UVLED---43
4.1 GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate---44
4.2 Fabrication---44
4.3 Result and discussion---46
4.4 Summary---53
4.5 Reference---54
Chapter 5 GaN-based power device---56
5.1.1 AlGaN/GaN power HEMT with RPD AlN nucleation layer---56
5.1.2 Fabrication---57
5.1.3 Result and discussion---58
5.1.4 Summary---61
5.2.1 AlGaN/GaN HEMT with a single embedded graphene layer---63
5.2.2 Fabrication---63
5.2.3 Result and discussion---65
5.2.4 Summary---69
5.3 Reference---69
Chapter 6 Conclusion &; future work---71
6.1 Reference---74
Publication list---75

[1] E. F. Schubert, Light-Emitting Diodes, 2nd ed., pp. 212. (Cambridge University Press, Cambridge, 2006).
[2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett., 81, 1246 (2002).
[3] H. Morkoc, Nitride Semiconductors and devices, (Springer-Verlag, Berlin, 1999).
[4] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, IEEE Trans. Electron Device, 51, 1913 (2004).
[5] K. K. Chu, P. C. Chao, M. T. Pizzella, R. Actis, D. E. Meharry, K. B. Nichols, R. P. Vaudo, X. Xu, J. S. Flynn, J. Dion, and G. R. Brandes, IEEE Electron Device Letters, 25, 596 (2004).
[6] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, IEEE Photonics Technology Letter, 15, 18 (2003).
[7] B. S. Kang, S. Kim, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal. J. C. Roberts, E. L. Piner, K. J. Linthicum, S. N. G. Chu, K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton, Applied Physics Letters, 85, 2962 (2004).
[8] T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T.Hino, S. Uchida, and M. Ikeda, IEEE Journal of Quantum Electronics, 39, 135 (2003).
[9] S. J. Pearton, “GaN and Related Materials”, Gordon and Breach Science Publishers, 1997.
[10] Maury Wright, LEDs Magazing. (http://www.ledsmagazine.com/).
[11] E. F. Schubert, and J.K. Kim, science, 308, 1274 (2005).
[12] E. F. Schubert, Light-Emitting Diodes. (Cambridge University Press, Cambridge, U.K. 2003).
[13] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. (New York: Wiley.)
[14] J. I. Pankove, E. A. Miller, J. E. Berkeyheiser, J. Luminescence, 5, 84 (1992).
[15] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., 48, 353 (1986).
[16] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Jpn. J. Appl. Phys., 28, L2112 (1989).
[17] S. Nakamura, T. Mukai, M. Senoh, and N. Jwasa, Jpn. J. Appl. Phys., 31, 1258 (1992).
[18] The IEEE 802.15.7 Visible Light Communication Task Group
[19] R. Colin Johnson, Visible light illuminates a new approach for wireless comms (http://www.embedded.com/print/4199568)
[20] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Tamada, T. Taguchi, and Kudo, Appl. Phys. Lett., 83, 4906 (2003)
[21] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau and S. J. Cheng, Appl. Phys. Lett., 93, 081108 (2008)
[22] D. Kapolnek, S.Keller,R.Vetury, R. D.Underwood, P. Kozodoy, S. P. Den Baars, and U. K. Mishra, Appl. Phys. Lett., 71, 1204 (1997)
[23] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Bachelor, and R. Davis, Appl. Phys. Lett., 75, 196 (1999)
[24] M. J. Kappers, R. Datta, R. A. Oliver, F. D. G. Rayment, M. E. Vickers, and C. J. Humphreys, J. Cryst. Growth, 300 (2007)
[25] S. H. Park, J. Appl. Phys., 91, 9904 (2002)
[26] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, Semicond. Sci. Technol., 27, 024001 (2012)
[27] D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, J. Vac. Sci. Technol. A, 30, 041513 (2012)
[28] P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett., 100, 021104 (2012)
[29] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express, 19, S4 (2011)
[30] H. Zhao andN. Tansu, J. Appl. Phys., 107, 113110 (2010)
[31] J. Zhang and N. Tansu, J. Appl. Phys., 110, 113110 (2011)
[32] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., 84, 855 (2004)
[33] M.K.Kwon, J.Y.Kim, I.K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, Appl. Phys. Lett., 92, 251110 (2008)
[34] K.-J. Byeon, J.-Y. Cho, J. Kim, H. Park, and H. Lee, Opt. Express, 20, 11423 (2012)
[35] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C.Wang, IEEE Photon. Technol. Lett., 18, 10 (2006)
[36] Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, J. Cryst. Growth, 272, 1-4 (2004)
[37] X.-H.Huang, J.-P. Liu, J.-J.Kong,H.Yang, andH.-B.Wang, Opt. Express, 19, S4 (2011)
[38]Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, IEEE J. Sel. Topics Quantum Electron., 15, 4 (2009)
[39] Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, J. Crys. Growth, 312, 8 (2010)
[40] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, Appl. Phys. Lett., 98, 151102 (2011)
[41] W. Cao, J. M. Biser, Y.-K. Ee, X.-H. Li, N. Tansu, H. M. Chan, and R. P. Vinci, J. Appl. Phys., 110, 053505 (2011)
[42] C.-C. Kao, Y.-K. Su, C.-L. Lin, and J.-J. Chen, Appl. Phys. Lett., 97, 023111 (2010)
[43] T. Shinagawa, Y. Abe, H. Matsumoto, B. Li, K. Murakami, N. Okada, K. Tadatomo, M. Kannaka, and H. Fujii, Phys. Status Solidi C, 7, 7-8 (2010)
[44] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G.Wang, J. Appl. Phys., 103, 014314 (2008)
[45] Yongjian Sun, Tongjun Yu, Jinhong Dai, Nonghua Wang, Ruihonguo, Zhiwen Liang, Neng Zhang, Chengyang Li Xiangning Kang and Guoyi Zhang. CrystEngComm, 16, 5458–5465 (2014)
[46] Haiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng, and Guohong Wang. Journal of Applied Physics 103, 014314 (2008)
[47] Elison Matioli et. al., Appl. Phys. Lett. 96, 031108 (2010)
[48] S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett., 70, 4 (1997)
[49] D.-S. Wuu, H.-W. Wu, S.-T. Chen, T.-Y. Tsai, and X. Ray-Huahorng, J. Cryst. Growth, 311, 10 (2009)
[50] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang et al. Appl. Phys. Lett. 89, 161105 (2006)
[51] Kun-Ching Shen, Dong-Sing Wuu, Chun-Cheng Shen et al. Journal of the Electrochemical Society, 158, 10 (2011)
[52] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).
[53] C.-F. Lin, J.-J. Dai, G.-M. Wang, and M.-S. Lin, Appl. Phys. Express 3, 092101 (2010).
[54] H. Goto, S. W. Lee, H. J. Lee, H.-J. Lee, J. S. Ha, M. W. Cho, and T. Yao, Phys. Status Solidi C 5, 1659 (2008).
[55] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, Appl. Phys. Lett. 91, 071120 (2007).
[56] J. Park, K. M. Song, S.-R. Jeon, J. H. Baek, and S.-W. Ryu, Appl. Phys. Lett. 94, 221907 (2009).
[57] D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, J. Appl. Phys. 90, 4219 (2001).
[58] M. Itoh, T. Kinoshita, C. Koike, M. Takeuchi, K. Kawasaki, and Y. Aoyagi, Jpn. J. Appl. Phys. 45, 3988 (2006).
[59] C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin, H.-C. Kuo, and S. C. Wang, J. Appl. Phys. 95, 3916 (2004).
[60] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, and Y. Gogotsi, J. Appl. Phys. 96, 2853 (2004).
[61] E.-H. Park, J. Jang, S. Gupta, I. Ferguson, C.-H. Kim, S.-K. Jeon, and J.-S. Park, Appl. Phys. Lett. 93, 191103 (2008).
[62] P. Frajtag, J. P. Samberg, N. A. El-Masry, N. Nepal, and S. M. Bedair, J. Cryst. Growth 322, 27 (2011).
[63] S.-H. Chuang, C.-T. Pan, K.-C. Shen, S.-L. Ou, D.-S. Wuu, and R.-H. Horng, IEEE Photonics Technol. Lett. 25, 2435 (2013).
[64] Yamada M, Mitani T, Narukawa Y, Shioji S, Niki I, Sonobe S, Deguchi K, Sano M, Mukai T, Jpn J Appl Phys., 41, L1431 (2002)
[65] Cuong TV, Cheong HS, Kim HG, Kim HY, Hong C-H, Suh EK, Cho HK, Kong BH, Appl Phys Lett., 90, 131107 (2007)
[66] Lee YJ, Hwang JM, Hsu TC, Hsieh MH, Jou MJ, Lee BJ, Lu TC, Kuo HC, Wang SC, Photonics Tech Lett IEEE, 18, 10 (2006)
[67] Feng ZH, Qi YD, Lu ZD, Lau KM, J Cryst Growth, 272, 1-4 (2004)
[68] Lester SD, Ponce FA, Craford MG, Steigerwald DA, Appl Phys Lett., 66, 1249 (1995)
[69] Wang T, Liu YH, Lee YB, Izumi Y, Ao JP, Bai J, Li HD, Sakai S, J Cryst Growth, 235, 177 (2002)
[70] Lai WC, Yen CH, Yang YY, Wang CK, Chang SJ, J Display Technology, 9, 895 (2013)
[71] Chang SJ, Chang CS, Su YK, Lee CT, Chen WS, Shen CF, Hsu YP, Shei SC, Lo HC, Adv Packaging IEEE Trans, 28, 273 (2005)
[72] Heinke H, Kirchner V, Einfeldt S, Hommel D, Appl Phys Lett, 77, 2145 (2000)
[73] Huang XH, Liu JP, Kong JJ, Yang H, Wang HB, Opt Express, 19, A949 (2011)
[74] Wu XH, Fini P, Tarsa EJ, Heying B, Keller S, Mishra UK, DenBaars SP, Speck JS, J Cryst Growth, 189–190, 15 (1998)
[75] Heying B, Wu XH, Keller S, Li Y, Kapolnek D, Keller BP, DenBaars SP, Speck JS, Appl Phys Lett, 68, 643 (1996)
[76] S. Pimputkar, J. S. Speck, S. P. DenBaars, et al., Nature Photon, 3, 4 (2009)
[77] U. K. Mishra, L. Shen, T. E. Kazior, et al., Proc. IEEE, 96, 2 (2008)
[78] Y. Uemoto, D. Shibata, M. Yanagihara, et al., in Proc.IEEE IEDM, 861–864 (2007)
[79] T. D. Huang, X. L. Zhu, and K. M. Lau, IEEE Electron Device Lett., 33, 8 (2012)
[80] T. D. Huang, Z. J. Liu, X. L. Zhu, et al., IEEE Trans. Electron Devices, 60, 10 (2013)
[81] H. Lee, D. Piedra, M. Sun, et al., IEEE Electron Device Lett., 33, 7 (2012)
[82] I. Polentier, L. Buydens, A. Ackaert, P. Demeester, P. van Daele, F. Depestel, D. Lootens, and R. Baets, Electron. Lett. 26, 925 (1990).
[83] Heinke H, Kirchner V, Einfeldt S, Hommel D, Appl Phys Lett, 77, 2145 (2000)
[84] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek Jr. and T. P. Chow, Applied Physics Letters, 102, 192107 (2013)
[85] Zhao Jun Liu, Member, IEEE, Tongde Huang, Student Member, IEEE, Jun Ma, Chao Liu, and Kei May Lau, Fellow, IEEE Electron Device Letters, 35, 3 (2014)
[86] Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, IEEE Electron Device Lett., 25, 117 (2004).
[87] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, IEEE Electron Device Lett., 31, 195 (2010).
[88] Yang Liyuan, Ai Shan, Chen Yonghe, et al., Journal of Semiconductors, 34, 7 (2013)
[89] W. D. Hu, X. S. Chen,a, Z. J. Quan, C. S. Xia, and W. Lub, JOURNAL OF APPLIED PHYSICS 100, 074501 (2006)
[90] Li, X. S., Cai, W. W., An, J. H., Kim, S.; Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., et al. Science 324, 1312 (2009).
[91] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S.; et al. Phys. Rev. Lett., 97, 187401 (2006).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top