|
[1] Robblee LS. Activated Ir: An Electrode Suitable for Reversible Charge Injection in Saline Solution. J Electrochem Soc 1983;130:731. [2] Beebe X, Rose TL. Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng 1988;35:494–5. [3] Johnson PF, Hench LL. An in vitro analysis of metal electrodes for use in the neural environment. Brain Behav Evol 1977;14:23–45. [4] Kötz R. Anodic Iridium Oxide Films. J Electrochem Soc 1984;131:72. [5] Kumar PSA, Panda B, Ray SK, Mathur BK, Bhattacharya D, Chopra KL. Effect of electrode microstructure on leakage current in lead–lanthanum–zirconate–titanate multilayer capacitors. Appl Phys Lett 1996;68:1344. [6] McIntyre JDE. Oxidation State Changes and Structure of Electrochromic Iridium Oxide Films. J Electrochem Soc 1980;127:1264. [7] Kang KS. Blue Sputtered Iridium Oxide Films (Blue SIROF’s). J Electrochem Soc 1983;130:766. [8] Sato Y. Electrochromism in Iridium Oxide Films Prepared by Thermal Oxidation of Iridium-Carbon Composite Films. J Electrochem Soc 1987;134:570. [9] Klein J. Reactive IrO2 sputtering in reducing/oxidizing atmospheres. J Mater … 1995;02062. [10] Liao P, Ho W. Characterization of sputtered iridium dioxide thin films. J Mater … 1998. [11] Pinnow CU, Kasko I, Nagel N, Mikolajick T, Dehm C, Jahnel F, et al. Oxygen tracer diffusion in IrO2 barrier films. J Appl Phys 2002;91:1707. [12] Slavcheva E, Vitushinsky R, Mokwa W, Schnakenberg U. Sputtered Iridium Oxide Films as Charge Injection Material for Functional Electrostimulation. J Electrochem Soc 2004;151:E226. [13] Slavcheva E, Schnakenberg U, Mokwa W. Deposition of sputtered iridium oxide—Influence of oxygen flow in the reactor on the film properties. Appl Surf Sci 2006;253:1964–9. [14] Thanawala S, Georgiev DG, Baird RJ, Auner G. Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering. Thin Solid Films 2007;515:7059–65. [15] Kuwabara T, Tomita E, Sakita S, Hasegawa D, Sone K, Yagi M. Characterization and Analysis of Self-Assembly of a Highly Active Colloidal Catalyst for Water Oxidation onto Transparent Conducting Oxide Substrates. J Phys Chem C 2008;112:3774–9. [16] Thanawala SS, Baird RJ, Georgiev DG, Auner GW. Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings. Appl Surf Sci 2008;254:5164–9. [17] Negi S, Bhandari R, Solzbacher F. Morphology and electrochemical properties of activated and sputtered iridium oxide films for functional electrostimulation. J Sens Technol 2012;2012:138–47. [18] Yano J, Noguchi K, Yamasaki S, Yamazaki S. Novel color change of electrochromic iridium oxide in a matrix aramid resin film. Electrochem Commun 2004;6:110–4. [19] Zhao Y, Vargas-Barbosa NM, Hernandez-Pagan EA, Mallouk TE. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions. Small 2011;7:2087–93. [20] Zhao C, Yu H, Li Y, Li X, Ding L, Fan L. Electrochemical controlled synthesis and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction. J Electroanal Chem 2013;688:269–74. [21] Tolosa VM, Wassum KM, Maidment NT, Monbouquette HG. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe. Biosens Bioelectron 2013;42:256–60. [22] Badia-Bou L, Mas-Marza E. Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J … 2013. [23] Kakooei S, Ismail M, Wahjoedi B. Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices. Int J Electrochem Sci 2013;632. [24] Kakooei S, Ismail M, Wahjoedi B. Electrochemical Study of Iridium Oxide Coating on Stainless Steel Substrate. Int J Electrochem Sci 2013;8:3290–301. [25] Prats-Alfonso E, Abad L, Casañ-Pastor N, Gonzalo-Ruiz J, Baldrich E. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron 2013;39:163–9. [26] Musić S, Popović S, Maljković M, Skoko Z, Furić K, Gajović a. Thermochemical formation of IrO2 and Ir. Mater Lett 2003;57:4509–14. [27] Kawar R, Chigare P, Patil P. Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films. Appl Surf Sci 2003;206:90–101. [28] Juodkazytė J, Šebeka B, Valsiunas I, Juodkazis K. Iridium Anodic Oxidation to Ir(III) and Ir(IV) Hydrous Oxides. Electroanalysis 2005;17:947–52. [29] Fierro S, Kapałka A, Comninellis C. Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution. Electrochem Commun 2010;12:172–4. [30] WP G. The chemistry of the rarer platinum metals (Os, Ru, Ir, and Rh). 1967. [31] Li D, Goodwin K, Yang C-L. Electroless copper deposition on aluminum-seeded ABS plastics. J Mater Sci 2008;43:7121–31. [32] Ling G, He J, Huang L. Size control of silver nanoparticles deposited on silica dielectric spheres by electroless plating technique. J Mater Sci 2004;39:2955–7. [33] Lide DR. CRC Handbook of Chemistry and Physics CD-ROM, Version 2010 - CRC Press Book. CRC Press 2010. [34] Riedel S, Kaupp M. The highest oxidation states of the transition metal elements. Coord Chem Rev 2009;253:606–24. [35] Weiland JD, Anderson DJ. Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng 2000;47:911–8. [36] Meyer RD, Cogan SF, Nguyen TH, Rauh RD. Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 2001;9:2–11. [37] Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng 2002;49:1574–9. [38] Geddes L a., Roeder R. Criteria for the Selection of Materials for Implanted Electrodes. Ann Biomed Eng 2003;31:879–90. [39] Cogan SF, Plante TD, Ehrlich J. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. Conf Proc IEEE Eng Med Biol Soc 2004;6:4153–6. [40] Cogan S, Troyk P. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. … , IEEE Trans 2005;52:1612–4. [41] Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng 2008;10:275–309. [42] Green R a, Lovell NH, Wallace GG, Poole-Warren L a. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 2008;29:3393–9. [43] Cogan SF, Ehrlich J, Plante TD, Smirnov A, Shire DB, Gingerich M, et al. Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater 2009;89:353–61. [44] Poppendieck W, Koch K. A measurement set-up to determine the charge injection capacity of neural microelectrodes. World Congr … 2009:162–5. [45] Negi S, Bhandari R, Rieth L, Solzbacher F. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed Mater 2010;5:15007. [46] Yoshida K, Farina D. Multichannel intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc … 2010. [47] Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 2010;26:62–9. [48] Huang W-D, Cao H, Deb S, Chiao M, Chiao JC. A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 2011;169:1–11. [49] Negi S, Bhandari R, Solzbacher F. Morphology and electrochemical properties of activated and sputtered iridium oxide films for functional electrostimulation. J Sens Technol 2012;2012:138–47. [50] Jensen W, Ieee M, Stieglitz T, Ieee SM. A transverse intrafascicular multichannel electrode (TIME) to treat phantom limb pain—Towards human clinical trials. … (BioRob), 2012 4th … 2012. [51] Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med 2014;6:222ra19–222ra19. [52] Katsube T, Lauks I, Zemel JN. pH-sensitive sputtered iridium oxide films. Sensors and Actuators 1981;2:399–410. [53] Fog A, Buck RP. Electronic semiconducting oxides as pH sensors. Sensors and Actuators 1984;5:137–46. [54] Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E. Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim Acta 2007;52:3889–94. [55] Rasten E, Hagen G, Tunold R. Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim Acta 2003;48:3945–52. [56] Yang Y-T, Lin P-K, Wan C, Yang W-C, Lin L-J, Wu C-Y, et al. Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array. Invest Ophthalmol Vis Sci 2011;52:9353–61. [57] Rose TL, Robblee LS. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng 1990;37:1118–20. [58] Cogan SF, Troyk PR, Ehrlich J, Plante TD, Detlefsen DE. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Trans Biomed Eng 2006;53:327–32. [59] Robblee LS, Mangaudis MJ, Lasinsky ED, Kimball AG, Brummer SB. Charge Injection Properties of Thermally-Prepared Iridium Oxide Films. MRS Proc 2011;55:303. [60] Schmidt EM, Hambrecht FT, McIntosh JS. Intracortical capacitor electrodes: preliminary evaluation. J Neurosci Methods 1982;5:33–9. [61] Rose TL, Kelliher EM, Robblee LS. Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods 1985;12:181–93. [62] Vuković M. Voltammetric and galvanostatic studies of hydrous and anhydrous iridium oxide films. J Appl Electrochem 1990;20:969–73. [63] Chen T-M, Hung J-Y, Pan F-M, Chang L, Wu S-C, Tien T-C. Pulse electrodeposition of iridium oxide on silicon nanotips for field emission study. J Nanosci Nanotechnol 2009;9:3264–8. [64] Hodes G. Chemical Solution Deposition Of Semiconductor Films. Taylor & Francis; 2002. [65] Varkey AJ, Fort AF. Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Sol Energy Mater Sol Cells 1993;29:253–9. [66] Varkey AJ, Fort AF. Solution growth technique for deposition of nickel oxide thin films. Thin Solid Films 1993;235:47–50. [67] Schlesinger M, Paunovic M E. Modern electroplating. 5 ed. New York: John Wiley & Sons.; 2010. [68] Popov KI, Djokic SS GB. Metal deposition without an external current. Fundamental aspects of electrometallurgy. New York: Kluwer Academic/Plenum Publishers; 2002. [69] Meek RL. A Rutherford Scattering Study of Catalyst Systems for Electroless Cu Plating. J Electrochem Soc 1975;122:1478. [70] Chen J-Y. Synthesis and Characterization of Transition Metal/Metal Oxide Films from Solution. National Chiao Tung University, 2014. [71] Hintermair U, Hashmi SM, Elimelech M, Crabtree RH. Particle formation during oxidation catalysis with Cp* iridium complexes. J Am Chem Soc 2012;134:9785–95. [72] HARRIMAN A, THOMAS JM, MILWARD GR. Catalytic and structural properties of iridium-iridium dioxide colloids. New J Chem 1987;11:757–62. [73] Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H. Iridium Oxide/Platinum Electrocatalysts for Unitized Regenerative Polymer Electrolyte Fuel Cells. J Electrochem Soc 2000;147:2018. [74] Castilloblum SE, Richens DT SA. Oxidation of hexaaquairidium(III) and related studies: preparation and properties of iridium (III), iridium(IV), and irdium(V) dimers as aqua ions. Inorg Chem 1989;28(5):954–60. [75] Venediktov AB, Fedotov MA KS. Transformations of the hexanitroiridate(III) ion in chloride and hydrochloric acid solutions. Russ J Coord Chem 1995;25(4):9785–95. [76] Castillo-Blum SE, Richens DT, Sykes AG. New aqua ions of iridium in oxidation states (III), (IV), and (V). J Chem Soc Chem Commun 1986:1120. [77] Abili Nejad M, Jonsson M. Dynamics for oxidation of Fe3O4, Fe2CoO4 and Fe2NiO4. J Nucl Mater 2005;345:219–24. [78] Loon G Van, Page JA. THE CHEMISTRY OF IRIDIUM IN BASIC AQUEOUS SOLUTION: A POLAROGRAPHIC STUDY. Can J Chem 1966;44:515–20. [79] Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM, Dysart JL, Mallouk TE. A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. J Phys Chem Lett 2011;2:402–6. [80] Shukla AK, Kannan AM, Hegde MS, Gopalakrishnan J. Effect of counter cations on electrocatalytic activity of oxide pyrochlores towards oxygen reduction/evolution in alkaline medium: an electrochemical and spectroscopic study. J Power Sources 1991;35:163–73. [81] Dutt M, Banerjee R, Barua A. Transport properties of lithium and sodium doped nickel oxide. Phys Status Solidi 1981;365:365–70. [82] Roy S, Guo Y, Venkatesh S, Ali N. Interplay of structure and transport properties of sodium-doped lanthanum manganite. J Phys … 2001;9547.
|