跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 23:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詠民
研究生(外文):Chen, Yong-Min
論文名稱:化學浴沉積二氧化銥應用於生物相容性電極
論文名稱(外文):Chemical Bath Deposition of Iridium Oxide for Biocompatible Electrodes
指導教授:吳樸偉
指導教授(外文):Wu, Pu-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:62
中文關鍵詞:多步驟法生物電極二氧化銥非晶型二氧化銥無電鍍化學浴沉積電荷儲存能力
外文關鍵詞:Multi-stepNeural electrodeIridium oxideElectroless depostionChemical bath depositionCharge storage capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們利用了多步驟法製備1 um的非晶型二氧化銥以符合應用於生物電極之需求厚度。配方改良自原實驗室開發的無電鍍液配方,探討其在不同溫度和不同pH情況下沉積的效率,進而調整出最佳的鍍液環境。在製備同時,我們也觀察到隨著鍍層增加,其表面粗糙度正相關;而和水的接觸角有負相關。另外也探討了關於NaNO2效應和預先配位法如何影響鍍膜效率,以期能配置效率更高的鍍液。
另外,1 um的二氧化銥亦做了XPS的定性與定量分析來確認銥的氧化態與雜質的存在性。XRD則鑑定了剛沉積的二氧化銥薄膜為非晶型,可藉由熱處理轉成晶型。最後,藉由電化學測量來得知1 um二氧化銥的電化學特性、極限電壓、電荷儲存能力等,以期能應用於生物相容性電極上。

In this study, a 1μm amorphous IrO2 film is successfully fabricated by a multi-step chemical bath deposition and the IrO2 film is expected to be used as a biocompatible electrode. We modify the recipe that developed earlier in our laboratory and explore the deposition efficiency at different pH values and temperatures. We identify that the optimized condition is for bath with pH 12 and 25 °C. When the deposited layer was increased, the surface roughness was also increased, but the contact angle of water was decreased. Also, we discuss the effect of the NaNO2 and pre-coordination on the deposition efficiency.
In addition, we identify the Ir oxidation state and the existence of impurities by XPS, and then use the XRD to identify the phase transition of the 1μm IrO2 film from amorphous state to crystalline one by thermal treatment. Lastly, we carry out the electrochemical measurements to determine the limit potentials and charge storage capacity of the IrO2 film.

摘要 i
Abstract ii
Acknowledgements iii
Contents v
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1. Physical and chemical properties of Ir and IrO2 3
2.2. Principle and structure of retinal prosthesis 4
2.2.1 Principle 4
2.2.2 Materials for neural stimulation electrode 6
2.3 Fabrications of IrO2 films 8
2.3.1 Sputtering 8
2.3.2 Thermal decomposition 8
2.3.3 Electrodeposition 9
2.3.4 Chemical bath deposition 9
Chapter 3 Experimental 15
3.1 Experimental design 15
3.2 Materials 16
3.2.1 Chemicals 16
3.2.2 Substrates 16
3.3 Chemical bath deposition 17
3.3.1 Temperature effect 17
3.3.2 pH effect 19
3.3.3 Deposition on different substrates 21
3.4 Thin film characterization 23
3.4.1 Scanning electron microscopy (SEM) & Energy dispersive spectrometer (EDS) 23
3.4.2 X-ray diffraction (XRD) 24
3.4.3 Atomic force microscope (AFM) 24
3.4.4 X-ray photoelectron spectroscopy (XPS) 25
3.4.5 Contact angle 25
3.4.6 Hall effect 25
3.4.7 Electrochemical workstation 26
3.5 Solution characterization 27
3.5.1 UV-Vis absorption spectra 27
3.5.2 Zeta potentials (ζ-potential) 27
Chapter 4 Results and discussion 28
4.1 Chemical bath deposition 28
4.1.1 Temperature effect 28
4.1.2 pH effect 29
4.1.3 Deposition on different substrates 32
4.2 Multi-step deposition 35
4.2.1 Process and heat treatment 35
4.2.2 Characterization of processing steps 37
4.3 Fine tuning recipe 43
4.3.1 NaNO2 effect 43
4.3.2 Pre-coordination 44
4.4 Materials characterization 47
4.4.1 Biocompatibility evaluation (ISO-10993) 47
4.4.2 Electrical property 51
Chapter 5 Conclusion 54
References 55

[1] Robblee LS. Activated Ir: An Electrode Suitable for Reversible Charge Injection in Saline Solution. J Electrochem Soc 1983;130:731.
[2] Beebe X, Rose TL. Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng 1988;35:494–5.
[3] Johnson PF, Hench LL. An in vitro analysis of metal electrodes for use in the neural environment. Brain Behav Evol 1977;14:23–45.
[4] Kötz R. Anodic Iridium Oxide Films. J Electrochem Soc 1984;131:72.
[5] Kumar PSA, Panda B, Ray SK, Mathur BK, Bhattacharya D, Chopra KL. Effect of electrode microstructure on leakage current in lead–lanthanum–zirconate–titanate multilayer capacitors. Appl Phys Lett 1996;68:1344.
[6] McIntyre JDE. Oxidation State Changes and Structure of Electrochromic Iridium Oxide Films. J Electrochem Soc 1980;127:1264.
[7] Kang KS. Blue Sputtered Iridium Oxide Films (Blue SIROF’s). J Electrochem Soc 1983;130:766.
[8] Sato Y. Electrochromism in Iridium Oxide Films Prepared by Thermal Oxidation of Iridium-Carbon Composite Films. J Electrochem Soc 1987;134:570.
[9] Klein J. Reactive IrO2 sputtering in reducing/oxidizing atmospheres. J Mater … 1995;02062.
[10] Liao P, Ho W. Characterization of sputtered iridium dioxide thin films. J Mater … 1998.
[11] Pinnow CU, Kasko I, Nagel N, Mikolajick T, Dehm C, Jahnel F, et al. Oxygen tracer diffusion in IrO2 barrier films. J Appl Phys 2002;91:1707.
[12] Slavcheva E, Vitushinsky R, Mokwa W, Schnakenberg U. Sputtered Iridium Oxide Films as Charge Injection Material for Functional Electrostimulation. J Electrochem Soc 2004;151:E226.
[13] Slavcheva E, Schnakenberg U, Mokwa W. Deposition of sputtered iridium oxide—Influence of oxygen flow in the reactor on the film properties. Appl Surf Sci 2006;253:1964–9.
[14] Thanawala S, Georgiev DG, Baird RJ, Auner G. Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering. Thin Solid Films 2007;515:7059–65.
[15] Kuwabara T, Tomita E, Sakita S, Hasegawa D, Sone K, Yagi M. Characterization and Analysis of Self-Assembly of a Highly Active Colloidal Catalyst for Water Oxidation onto Transparent Conducting Oxide Substrates. J Phys Chem C 2008;112:3774–9.
[16] Thanawala SS, Baird RJ, Georgiev DG, Auner GW. Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings. Appl Surf Sci 2008;254:5164–9.
[17] Negi S, Bhandari R, Solzbacher F. Morphology and electrochemical properties of activated and sputtered iridium oxide films for functional electrostimulation. J Sens Technol 2012;2012:138–47.
[18] Yano J, Noguchi K, Yamasaki S, Yamazaki S. Novel color change of electrochromic iridium oxide in a matrix aramid resin film. Electrochem Commun 2004;6:110–4.
[19] Zhao Y, Vargas-Barbosa NM, Hernandez-Pagan EA, Mallouk TE. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions. Small 2011;7:2087–93.
[20] Zhao C, Yu H, Li Y, Li X, Ding L, Fan L. Electrochemical controlled synthesis and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction. J Electroanal Chem 2013;688:269–74.
[21] Tolosa VM, Wassum KM, Maidment NT, Monbouquette HG. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe. Biosens Bioelectron 2013;42:256–60.
[22] Badia-Bou L, Mas-Marza E. Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J … 2013.
[23] Kakooei S, Ismail M, Wahjoedi B. Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices. Int J Electrochem Sci 2013;632.
[24] Kakooei S, Ismail M, Wahjoedi B. Electrochemical Study of Iridium Oxide Coating on Stainless Steel Substrate. Int J Electrochem Sci 2013;8:3290–301.
[25] Prats-Alfonso E, Abad L, Casañ-Pastor N, Gonzalo-Ruiz J, Baldrich E. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron 2013;39:163–9.
[26] Musić S, Popović S, Maljković M, Skoko Z, Furić K, Gajović a. Thermochemical formation of IrO2 and Ir. Mater Lett 2003;57:4509–14.
[27] Kawar R, Chigare P, Patil P. Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films. Appl Surf Sci 2003;206:90–101.
[28] Juodkazytė J, Šebeka B, Valsiunas I, Juodkazis K. Iridium Anodic Oxidation to Ir(III) and Ir(IV) Hydrous Oxides. Electroanalysis 2005;17:947–52.
[29] Fierro S, Kapałka A, Comninellis C. Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution. Electrochem Commun 2010;12:172–4.
[30] WP G. The chemistry of the rarer platinum metals (Os, Ru, Ir, and Rh). 1967.
[31] Li D, Goodwin K, Yang C-L. Electroless copper deposition on aluminum-seeded ABS plastics. J Mater Sci 2008;43:7121–31.
[32] Ling G, He J, Huang L. Size control of silver nanoparticles deposited on silica dielectric spheres by electroless plating technique. J Mater Sci 2004;39:2955–7.
[33] Lide DR. CRC Handbook of Chemistry and Physics CD-ROM, Version 2010 - CRC Press Book. CRC Press 2010.
[34] Riedel S, Kaupp M. The highest oxidation states of the transition metal elements. Coord Chem Rev 2009;253:606–24.
[35] Weiland JD, Anderson DJ. Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng 2000;47:911–8.
[36] Meyer RD, Cogan SF, Nguyen TH, Rauh RD. Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 2001;9:2–11.
[37] Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng 2002;49:1574–9.
[38] Geddes L a., Roeder R. Criteria for the Selection of Materials for Implanted Electrodes. Ann Biomed Eng 2003;31:879–90.
[39] Cogan SF, Plante TD, Ehrlich J. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. Conf Proc IEEE Eng Med Biol Soc 2004;6:4153–6.
[40] Cogan S, Troyk P. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. … , IEEE Trans 2005;52:1612–4.
[41] Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng 2008;10:275–309.
[42] Green R a, Lovell NH, Wallace GG, Poole-Warren L a. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 2008;29:3393–9.
[43] Cogan SF, Ehrlich J, Plante TD, Smirnov A, Shire DB, Gingerich M, et al. Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater 2009;89:353–61.
[44] Poppendieck W, Koch K. A measurement set-up to determine the charge injection capacity of neural microelectrodes. World Congr … 2009:162–5.
[45] Negi S, Bhandari R, Rieth L, Solzbacher F. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed Mater 2010;5:15007.
[46] Yoshida K, Farina D. Multichannel intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc … 2010.
[47] Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 2010;26:62–9.
[48] Huang W-D, Cao H, Deb S, Chiao M, Chiao JC. A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 2011;169:1–11.
[49] Negi S, Bhandari R, Solzbacher F. Morphology and electrochemical properties of activated and sputtered iridium oxide films for functional electrostimulation. J Sens Technol 2012;2012:138–47.
[50] Jensen W, Ieee M, Stieglitz T, Ieee SM. A transverse intrafascicular multichannel electrode (TIME) to treat phantom limb pain—Towards human clinical trials. … (BioRob), 2012 4th … 2012.
[51] Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med 2014;6:222ra19–222ra19.
[52] Katsube T, Lauks I, Zemel JN. pH-sensitive sputtered iridium oxide films. Sensors and Actuators 1981;2:399–410.
[53] Fog A, Buck RP. Electronic semiconducting oxides as pH sensors. Sensors and Actuators 1984;5:137–46.
[54] Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E. Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim Acta 2007;52:3889–94.
[55] Rasten E, Hagen G, Tunold R. Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim Acta 2003;48:3945–52.
[56] Yang Y-T, Lin P-K, Wan C, Yang W-C, Lin L-J, Wu C-Y, et al. Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array. Invest Ophthalmol Vis Sci 2011;52:9353–61.
[57] Rose TL, Robblee LS. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans Biomed Eng 1990;37:1118–20.
[58] Cogan SF, Troyk PR, Ehrlich J, Plante TD, Detlefsen DE. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Trans Biomed Eng 2006;53:327–32.
[59] Robblee LS, Mangaudis MJ, Lasinsky ED, Kimball AG, Brummer SB. Charge Injection Properties of Thermally-Prepared Iridium Oxide Films. MRS Proc 2011;55:303.
[60] Schmidt EM, Hambrecht FT, McIntosh JS. Intracortical capacitor electrodes: preliminary evaluation. J Neurosci Methods 1982;5:33–9.
[61] Rose TL, Kelliher EM, Robblee LS. Assessment of capacitor electrodes for intracortical neural stimulation. J Neurosci Methods 1985;12:181–93.
[62] Vuković M. Voltammetric and galvanostatic studies of hydrous and anhydrous iridium oxide films. J Appl Electrochem 1990;20:969–73.
[63] Chen T-M, Hung J-Y, Pan F-M, Chang L, Wu S-C, Tien T-C. Pulse electrodeposition of iridium oxide on silicon nanotips for field emission study. J Nanosci Nanotechnol 2009;9:3264–8.
[64] Hodes G. Chemical Solution Deposition Of Semiconductor Films. Taylor & Francis; 2002.
[65] Varkey AJ, Fort AF. Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Sol Energy Mater Sol Cells 1993;29:253–9.
[66] Varkey AJ, Fort AF. Solution growth technique for deposition of nickel oxide thin films. Thin Solid Films 1993;235:47–50.
[67] Schlesinger M, Paunovic M E. Modern electroplating. 5 ed. New York: John Wiley & Sons.; 2010.
[68] Popov KI, Djokic SS GB. Metal deposition without an external current. Fundamental aspects of electrometallurgy. New York: Kluwer Academic/Plenum Publishers; 2002.
[69] Meek RL. A Rutherford Scattering Study of Catalyst Systems for Electroless Cu Plating. J Electrochem Soc 1975;122:1478.
[70] Chen J-Y. Synthesis and Characterization of Transition Metal/Metal Oxide Films from Solution. National Chiao Tung University, 2014.
[71] Hintermair U, Hashmi SM, Elimelech M, Crabtree RH. Particle formation during oxidation catalysis with Cp* iridium complexes. J Am Chem Soc 2012;134:9785–95.
[72] HARRIMAN A, THOMAS JM, MILWARD GR. Catalytic and structural properties of iridium-iridium dioxide colloids. New J Chem 1987;11:757–62.
[73] Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H. Iridium Oxide/Platinum Electrocatalysts for Unitized Regenerative Polymer Electrolyte Fuel Cells. J Electrochem Soc 2000;147:2018.
[74] Castilloblum SE, Richens DT SA. Oxidation of hexaaquairidium(III) and related studies: preparation and properties of iridium (III), iridium(IV), and irdium(V) dimers as aqua ions. Inorg Chem 1989;28(5):954–60.
[75] Venediktov AB, Fedotov MA KS. Transformations of the hexanitroiridate(III) ion in chloride and hydrochloric acid solutions. Russ J Coord Chem 1995;25(4):9785–95.
[76] Castillo-Blum SE, Richens DT, Sykes AG. New aqua ions of iridium in oxidation states (III), (IV), and (V). J Chem Soc Chem Commun 1986:1120.
[77] Abili Nejad M, Jonsson M. Dynamics for oxidation of Fe3O4, Fe2CoO4 and Fe2NiO4. J Nucl Mater 2005;345:219–24.
[78] Loon G Van, Page JA. THE CHEMISTRY OF IRIDIUM IN BASIC AQUEOUS SOLUTION: A POLAROGRAPHIC STUDY. Can J Chem 1966;44:515–20.
[79] Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM, Dysart JL, Mallouk TE. A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. J Phys Chem Lett 2011;2:402–6.
[80] Shukla AK, Kannan AM, Hegde MS, Gopalakrishnan J. Effect of counter cations on electrocatalytic activity of oxide pyrochlores towards oxygen reduction/evolution in alkaline medium: an electrochemical and spectroscopic study. J Power Sources 1991;35:163–73.
[81] Dutt M, Banerjee R, Barua A. Transport properties of lithium and sodium doped nickel oxide. Phys Status Solidi 1981;365:365–70.
[82] Roy S, Guo Y, Venkatesh S, Ali N. Interplay of structure and transport properties of sodium-doped lanthanum manganite. J Phys … 2001;9547.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top