[1] http:\\www.asemal.com.my/Content/Products/Products.
[2] W. Schintlmeister, W. Wallgram, and J. Kanz, “Properties, applications and manufacture of wear-resistant hard material coatings for tools”, Thin Solid Films, 107(1983), p.117-127.
[3] U. Helmersson, S. Todorova, S.A. Barnett, J. E. Sundgren, L.C. Markert, and J. E. Greene, “Growth of single crystal TiN/VN strained layer superlattices with extremely high mechanical hardness”, J. Appl. Phys., 62(2)(1987), p.481-484.
[4] H. Holleck, and H. Schulz, “Preparation and behaviour of wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries”, Surf. Coat. Technol., 36(1988), p.707-714.
[5] H. Holleck, M. Lahres, and P. Woll, “Multilayer coatings-influence of fabrication parameters on constitution and properties”, Surf. Coat. Technol., 41(1990), p.179-190.
[6] P. B. Mirkarimi, L. Hultman, and S.A. Barnett, “Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices”, Appl. Phys. Lett., 57(25)(1990), p.2654-2656.
[7] J. E. Sundgren, J. Birch, G. Hakansson, L. Hultman, and U. Helmersson, “Growth, structural characterization and properties of hard and wear-protective layered materials”, Thin Solid Films, 193-194(1990), p.818-831.
[8] H. Holleck, A. Kumar, Y. W. Chung, J. J. Moore, and J. E. Smugeresky (Eds.), Surface Engineering: Science and Technology I, The Minerals, Metals &; Materials Society, Warrendale, Pennsylvania, (1999), p.207-218.
[9] M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert, “Concepts for the design of advanced nanoscale PVD multilayer protective thin films”, J. Alloys Compd., 483(2009) p.321-333.
[10] H. Holleck, and V. Schier, “Multilayer PVD coatings for wear protection” Surf. Coat. Technol., 76(1995), p.328-336.
[11] P.C. Yashar, and W.D. Sproul, “Nanometer scale multilayered hard coatings”, Vacuum, 55(1999), p.179-190.
[12] M. Shinn, L. Hultman, and S. A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, J. Mater. Res., 7(4)(1992), p.901-911.
[13] P. B. Mirkarimi, S. A. Barnett, K. M. Hubbard, T. R. Jervis, and L. Hultman, “Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(110) superlattices”, J. Mater. Res., 9(6)(1994), p.1456-1467.
[14] X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, and S. A. Barnett, “Deposition and properties of polycrystalline TiN/NbN superlattice coatings”, J. Vac. Sci. Technol. A, 10(4)(1992), p.1604-1609.
[15] X. Chu, S. A. Barnett, M. S. Wong, and W. D. Sproul, “Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings”, Surf. Coat. Technol., 57(1993), p.13-18.
[16] G. Y. Li, Z. H. Han, J. W. Tian, J. H. Xu, and M. Y. Gu, “Alternating stress field and superhardness effect in TiN/NbN superlattice films”, J. Vac. Sci. Technol., A 20(3)(2002), p.674-677.
[17] P. Yashar, S. A. Barnett, J. Rechner, and W. D. Sproul, “Structure and mechanical properties of polycrystalline CrN/TiN superlattices”, J. Vac. Sci. Technol., A 16(5)(1998), p.2913-2918.
[18] S. Logothetidis, N. Kalfagiannis, K. Sarakinos and P. Patsalas, “Investigation of bilayer period and individual layer thickness of CrN/TiN superlattices by ellipsometry and X-ray techniques”, Surf. Coat. Technol., 200(2006), p.6176-6180.
[19] X.T. Zeng, S. Zhang, C.Q. Sun, and Y.C. Liu, “Nanometric-layered CrN/TiN thin films: mechanical strength and thermal stability”, Thin Solid Films, 424(2003), p.99-102.
[20] X. T. Zeng, “TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering”, Surf. Coat. Technol., 113(1999), p.75-79.
[21] W. D. Sproul, “Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings”, Surf. Coat. Technol., 86-87(1996), p.170-176.
[22] L. A. Donohue, W. D. Münz, D. B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov, and I. E. Greene, “Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering”, Surf. Coat. Technol., 93(1997), p.69-87.
[23] W. D. Münz, L. A. Donohue, and P. Eh. Hovsepian, “Properties of various large-scale fabricated TiAlN- and CrN-based superlattice coatings grown by combined cathodic arc-unbalanced magnetron sputter deposition”, Surf. Coat. Technol., 125(2000), p.269-277.
[24] P. Eh. Hovsepian, D. B. Lewis, and W. D. Münz, “Recent progress in large scale manufacturing of multilayer/superlattice hard coatings”, Surf. Coat. Technol., 133-134(2000), p.166-175.
[25] P. Eh. Hovsepian, and W.D. Münz, “Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings”, Vacuum, 69(2003), p.27-36.
[26] P. Eh. Hovsepian, D. B. Lewis, Q. Luo, W. D. Münz, P. H. Mayrhofer, C. Mitterer, Z., and W. M. Rainforth, “TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures”, Thin Solid Films, 485(2005), p.160-168.
[27] Z. Zhou, W. M. Rainforth, B. Rother, A. P. Ehiasarian, P. Eh. Hovsepian, and W. D Münz, “Elemental distributions and substrate rotation in industrial TiAlN/VN superlattice hard PVD coatings”, Surf. Coat. Technol., 183(2004), p.275-282.
[28] M. Kong, N. Shao, Y. S. Dong, J. L. Yue, and G. Y. Li, “Growth, microstructure and mechanical properties of (Ti,Al)N/VN nanomultilayers”, Mater. Lett., 60(2006), p.874-877.
[29] J. Musil, “Hard and superhard nanocomposite coatings”, Surf. Coat. Technol., 125(2000), p.322-330.
[30] J. S. Yoon, H. S. Myung, J. G. Han, and J. Musil, “A study on the synthesis and microstructure of WC–TiN superlattice coating”, Surf. Coat. Technol., 131(2000), p.372-377.
[31] H. Y. Lee, J. G. Han, S. H. Baeg, and S. H. Yang, “Structure and properties of WC–CrAlN superlattice films by cathodic arc ion plating process”, Thin Solid Films, 420-421(2002), p.414-420.
[32] K.W. Lee, Y.H. Chen, Y.W. Chung, and L.M. Keer, “Hardness, internal stress and thermal stability of TiB2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation”, Surf. Coat. Technol., 177-178(2004), p.591-596.
[33] J. Yang, M.X. Wang, Y.B. Kang. and D.J. Li, “Influence of bilayer periods on structural and mechanical properties of ZrC/ZrB2 superlattice”, Appl. Surf. Sci., 253(2007), p.5302-5305.
[34] D. J. Li, M. X. Wang, and J. J. Zhang, “Structural and mechanical responses of (Zr,Al)N/ZrB2 superlattice coatings to elevated-temperature annealing”, Mater. Sci. Eng. A, 423(2006), p.116-120.
[35] P. E. Hovsepian, D. B. Lewis, W. D. Müunz, A. Rouzaud, and P. Juliet, “Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique”, Surf. Coat. Technol., 116-119(1999), p.727-734.
[36] D. B. Lewis, D. Reitz, C. Wüstefeld, R. Ohser-Wiedemann, H. Oettel, A. P. Ehiasarian, and P. Eh. Hovsepian, “Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique”, Thin Solid Films, 503(2006), p.133-142.
[37] C. Reinhard, A. P. Ehiasarian, and P. Eh. Hovsepian, “CrN/NbN superlattice structured coatings with enhanced corrosion resistance achieved by high power impulse magnetron sputtering interface pre-treatment”, Thin Solid Films, 515(2007), p.3685-3692.
[38] D. C. Cameron, R. Aimo, Z. H. Wang, and K. A. Pischow, “Structural variations in CrN/NbN superlattices”, Surf. Coat. Technol., 142-144(2001), p.567-572.
[39] E. Bemporad, C. Pecchio, S. De Rossi, and F. Carassiti, “Characterization and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating”, Surf. Coat. Technol., 188-189(2004), p.319-330.
[40] H. Ljungcrantz, C. Engström, L. Hultman, M. Olsson, X. Chu, M. S. Wong, and W. D. Sproul, “Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering”, J. Vac. Sci. Technol., A, 16(5)(1998), p.3104-3113.
[41] C. Ziebert, and S. Ulrich, “Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization”, J. Vac. Sci. Technol. A, 24(3)(2006), p.554-583.
[42] S. Ulrich, C. Ziebert, M. Stüber, E. Nold, H. Holleck, M. Göken, E. Schweitzer, and P. Schloßmacher, “Correlation between constitution, properties and machining performance of TiN/ZrN multilayers”, Surf. Coat. Technol., 188-189(2004), p.331-337.
[43] A. Rizzo, M.A. Signore, M. Penza, M.A. Tagliente, F. De Riccardis, and E. Serra, “RF sputtering deposition of alternate TiN/ZrN multilayer hard coatings”, Thin Solid Films, 515(2006) p.500-504.
[44] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura, “Formation of cubic-A1N in TiN/A1N superlattice”, Surf. Coat. Technol., 86-87(1996), p.225-230.
[45] A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. David, and S.A. Barnett, “Stabilization of cubic AlN in epitaxial AlN/TiN superlattices”, Phys. Rev. Lett., 78(9)(1997), p.1743-1746.
[46] Q. Li, I. W. Kim, S. A. Barnett, and L. D. Marks, “Structures of AlN/VN superlattices with different AlN layer thicknesses”, J. Mater. Res., 17(5)(2002), p.1224–1231.
[47] J. Lao, Z. Han, J. Tian, and G. Li, “Mechanical property investigation of AlN/VN nanomultilayers with microindentation technique”, Mater. Lett., 58(2004), p.859-862.
[48] S. A. Barnett, A. Madan, I. W. Kim, and K. Martin, “Stability of nanometer-thick layers in hard coatings”, MRS Bull., 28(2003), p.169-172.
[49] G. S. Kim, S. Y. Lee, J. H. Hahn, and S. Y. Lee, “Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process”, Surf. Coat. Technol., 171(2003), p.91-95.
[50] M. Nordin, M. Larsson, and S. Hogmark, “Wear resistance of multilayered PVD TiN/TaN on HSS”, Surf. Coat. Technol., 120-121(1999), p.528-534.
[51] J. H. Xu, M. Kamiko, Y. M. Zhou, R. Yamamoto, G. Y. Li, and M. Y. Gu, “Superhardness effects of heterostructure NbN/TaN nanostructured multilayers”, J. Appl. Phys., 89(7)(2001), p.3674-3678.
[52] H. Söderberg, M. Odén, J. M. Molina-Aldareguia, and L. Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering”, J. Appl. Phys., 97(2005), 114327.
[53] H. Söderberg, M. Odén, T. Larsson, L. Hultman, and J. M. Molina-Aldareguia, “Epitaxial stabilization of cubic-SiNx in TiN∕SiNx multilayers”, Appl. Phys. Lett., 88(2006), 191902.
[54] S. Vepřek, and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, 268(1995), p.64-71.
[55] S. Vepřek, S. Reiprich, and S. H. Li, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Appl. Phys. Lett., 66(20)(1995), p.2640-2642.
[56] A. Niederhofer, T. Bolom, P. Nesladek, K. Moto, C. Eggs, D. S. Patil, and S. Veprek, “The role of percolation threshold for the control of the hardness and thermal stability of super- and ultra-hard nanocomposites”, Surf. Coat. Technol., 146-147(2001), p.183-188.
[57] P. Karvankova, M. G. J. Veprek-Heijman, O. Zindulka, A. Bergmaier, and S. Veprek, “Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: a comparative study of their properties”, Surf. Coatings Technol., 163-164(2002), p.149-156.
[58] S. Vepřek, “The search for novel, superhard materials “, J. Vac. Sci. Technol. A, 14 (1999), p.2401-2420.
[59] S. Veprek, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Kluwer, Dordrecht, 2004, p.23-33.
[60] S. Vepřek, M. Haussmann, and S. Reiprich, “Superhard nanocrystalline W2N/amorphous Si3N4 composite materials”, J. Vac. Sci. Technol. A, 14(1996), p.46-51.
[61] G. Abadias, A. Michel, C. Tromas, C. Jaouen, and S. N. Dub, “Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings”, Surf. Coat. Technol., 202(2007), p.844-853.
[62] J. S. Koehler, “Attempt to design a strong solid”, Phys. Rev. B, 2(1970), p.547-551.
[62] X. Chu and S.A. Barnett, “Model of superlattice yield stress and hardness enhancements”, J. Appl. Phys., 77(9)(1995), p.4403-4411.
[63] M. S. Wu and H. Y. Wang, “Influence of image forces on the size dependence of multilayer shear strength”, Mech. Mater., 40(2008), p.338-350.
[64] P. J. Martin, R. P. Netterfield, and T. J. Kinder, “Ion-beam-deposited films produced by filtered arc evaporation”, Thin Solid Films, 193(1990), p.77-83.
[65] E. Ertürk, H.J. Heuvel, and H.G. Dederichs, “Comparison of the steered arc and random arc techniques”, Surf. Coat. Technol., 39(1989), p.455-464.
[66] X. Shi, D. I. Flynn, B. K. Tay, and H. S. Tan, U.S. Patent US6031239 A1.
[67] S. PalDey, and S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Mater. Sci. Eng. A, 342(2003), p.58-79.
[68] A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Effects of Al content on hardness, lattice parameter and microstructure of Ti1−xAlxN films”, Surf. Coat. Technol., 120-121(1999), p.438-441.
[69] P. C. Jonson, and H. Randhawa, “Technical note: A review of cathodic arc plasma deposition processes and their applications”, Surf. Coat. Technol., 31(1987), p.303-318.
[70] C. Mendibide, P. Steyer, J. Fontaine, and P. Goudeau, “Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings - An explanation”, Surf. Coat. Technol., 201(2006), p.4119-4124.
[71] J. J. Zhang, M. X. Wang, J. Yang, Q. X. Liu, and D. J. Li, “Enhancing mechanical and tribological performance of multilayered CrN/ZrN coatings”, Surf. Coat. Technol., 201(2007), p.5186-5189.
[72] Z. G. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong, and C. Coddet, “Characterizations of magnetron sputtered CrSiN/ZrN multilayer coatings-from structure to tribological behaviors”, Adv. Eng. Mater., 11(2009), p.667-673.
[73] D. J. Li, F. Liu, M. X. Wang, J. J. Zhang, and Q. X. Liu, “Structural and mechanical properties of multilayered gradient CrN/ZrN coatings”, Thin Solid Films, 506(2006), p.202-206.
[74] Z. G. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong, and C. Codd, “Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings”, Appl. Surf. Sci., 255(2009), p.4020-4026.
[75] N. A. deSánchez, H. E. Jaramillo, Z. Vivas, W. Aperador, C. Amaya, and J. C. Caicedo, “Fracture resistant and wear corrosion performance of CrN/ZrN bilayers deposited onto AISI 420 stainless steel”, Adv. Mater. Res., 38(2008), p.63-75.
[76] Z. G. Zhang, O. Rapaud, N. Allain, M. Baraket, C. Dong, and C. Coddet, “Structure and mechanical properties of nanoscale multilayered CrN/ZrSiN coatings”, J. Vac. Sci. Technol. A, 27(2009) p.672-680.
[77] M. K. Wu, J. W. Lee, Y. C. Chan, H. W. Chen, and J. G. Duh “Influence of bilayer period and thickness ratio on the mechanical and tribological properties of CrSiN/TiAlN multilayer coatings”, Surf. Coat. Technol., 206(2011) p.1886-1892.
[78] F. Cai, X. Huang, Q. Yang, R.H. Wei, and D. Nagy, “Microstructure and tribological properties of CrN and CrSiCN coating”, Surf. Coat. Technol., 205(2010), p.182-188.
[79] Q. Li, F.Q. Jiang, Y.X. Leng, R.H. Wei, and N. Huang, “Microstructure and tribological properties of Ti(Cr)SiCN coating deposited by plasma enhanced magnetron sputtering”, Vacuum, 89(2013), p.168-173.
[80] P.J. Martin, A. Bendavid, J.M. Cairney, and M. Hoffman, “Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition”, Surf. Coat. Technol., 200(2005), p.2228-2235.
[81] B. D. Gullity, and S. R. Stock, Elements of X-ray Diffraction, 3rd Edition, Prentice Hall, New Jersey, (2001) p.367.
[82] G.G. Zhang, L.P. Wang, S.C. Wang, P.X. Yan, and Q.J. Xue, “Structure and mechanical properties of reactive sputtering CrSiN films”, Appl. Surf. Sci., 255(2009), p.4425–4429.
[83] H. Ahn, H. -W. Chen, D. Landheer, X. Wu, L.J. Chou, and T.-S. Chao, “Characterization of interfacial layer of ultrathin Zr silicate on Si(100) using spectroscopic ellipsometry and HRTEM”, Thin Solid Films, 455–456(2004), p.318–322.
[84] Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, “Composition analysis of SiO 2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films”, Appl. Surf. Sci., 184 (2001), p.161-166.
[85] K. Zhiu, X.Y. Wu, X. Zhang, L.Z. Qin, and B. Liao, “Effect on the C2H2 and N2 flow rate on nanocomposited nc-ZrCN/a-C:H(N) film synthesized by filtered cathodic vacuum arc technique”, Surf. Rev. Lett. 15(2008), p.781-786.
[86] M Detroye, F Reniers, C Buess-Herman, and J. Vereecken, “AES–XPS study of chromium carbides and chromium iron carbides”, Appl. Surf. Sci., 144–145(1999), p.78–82.
[87] W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater Res., 7(1992) p.1564-1583.
[88] M. Odén, C. Ericsson, G. Håkansson, and H. Ljungcrantz “Microstructure and mechanical behavior of arc-evaporated Cr–N coatings”, Surf. Coat. Technol.,114 (1999) p.39-51.
[89] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin Solid Films, 270(1995), p.431-438.
[90] H. Jehn, G. Reiners, and N. Siegel (Eds.), DIN Fachbericht 39, Characterisierung Dunner Schichten, Beuth Verlag, Berlin, (1993), p.213.
[91] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, and S. Vepřek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surf. Coat. Technol., 194(2005), p.143-148.
[92] B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, J. Am. Ceram. Soc., 63(1980), p.574-581.
[93] A. Leyland, and A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour”, Wear, 246(2000), p.1-11.
[94] J. Musil, and H. Hrubý, “Superhard nanocomposite Ti1−xAlxN films prepared by magnetron sputtering”, Thin Solid Films, 365,(2000) p.104-109.
[95] M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering”, Thin Solid Films, 339(1999), p.203-208.
[96] C.-T. Huang, and J.-G. Duh, “Deposition of (Ti,Al)N films on A2 tool steel by reactive r.f. magnetron sputtering”, Surf. Coat. Technol., 71(1995), p.259-266.
[97] A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Metastable Ti1-xAlxN films with different Al content”, J. Mater. Sci. Lett., 19(2000), p.601-602.
[98] A.E. Santana, A. Karimi, V.H. Derflinger, and A. Schütze, “Thermal Treatment Effects on Microstructure and Mechanical Properties of TiAlN Thin Films”, Tribology Lett., 4(17)(2004), p.689-696.
[99] A.A. Voevodin, D.V. Shtansky, E.A. Levashov, and J.J. Moore, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Kluwer Academic Publishers, Netherlands, 2004, p.53.
[100] P.C. Jindal, A.T. Santhanam, U. Schleinkofer, and A.F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, Int. J. Refract Met. H., 17(1999), p.163-170.
[101] S.-H. Huang, S.-F. Chen, Y.-C. Kuo, C.-J. Wang, J.-W. Lee, Y.--C. Chan, H.-W. Chen, J.-G. Duh, and T.-E. Hsieh, “Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings”, Surf. Coat. Technol., 206(2011), p.1744-1752.
[102] S.-F. Chen, Y.-C. Kuo, C.-J. Wang, S.-H. Huang, J.-W. Lee, Y.-C. Chan, H.-W. Chen, J.-G. Duh, and T.-E. Hsieh, “The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system”, Surf. Coat. Technol., 231(2013), p.247-252.
[103] C.-Y Tong, J.-W. Lee, C.-C. Kuo, S.-H. Huang, Y.-C. Chan, H.-W. Chen, and J.-G. Duh “Effects of carbon content on the microstructure and mechanical property of cathodic arc evaporation deposited CrCN thin films”, Surf. Coat. Technol., 231(2013), p.482-486.
[104] P. F. Hu, and B. L. Jiang, “Study on tribological property of CrCN coating based on magnetron sputtering plating technique”, Vacuum, 85(2011) p.994-998.
[105] G. G. Fuentes, M. J. Díaz de Cerio, J. A. García, R. Martínez, R. Bueno, R. J. Rodríguez, M. Rico, F. Montalá, and Yi Qin, “Gradient CrCN cathodic arc PVD coatings”, Thin Solid Films, 517(2009) p.5894-5899.
[106] 童正億,以陰極電弧鍍膜系統鍍製CrCN/ZrCN奈米多層薄膜之微結構與機械性質研究,明志科大,碩士論文,民國101年。[107] S. Binder, W. Lengauer, P. Ettmayer, J. Bauer, J. Debuigne, M. Bohn, “Phase equilibria in the systems Ti-C-N, Zr-C-N and Hf-C-N”, J. Alloys Compd., 217(1995), p.128-136.
[108] M.M. Larijani, M.B. Zanjanbar, and A. Majdabadi, “The effect of carbon fraction in Zr(C,N) films on the nano-structural properties and hardness”, J. Alloys Compd., 492(2010), p.735-738.
[109] C.S. Sandu, R. Sanjinés, M. Benkahoul, F. Medjani, and F. Lévy, “Formation of composite ternary nitride thin films by magnetron sputtering co-deposition”, Surf. Coat. Technol., 201(2006), p.4083–4089.
[110] Q.M. Wang, and K. H. Kim, “Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process”, Acta Materialia, 57(2009) p.4974–4987.
[111] T. Schmitt, P. Steyer, J. Fontaine, N. Mary, C. Esnouf, M. O'Sullivan, and F. Sanchette, “Cathodic arc deposited (Cr,Six)N coatings: From solid solution to nanocomposite structure”, Surf. Coat. Technol., 213(2012) p.117–125.
[112] H.S. Choi, J.H. Jang, T.F. Zhang, J.-H. Kim, I.-W. Park, and K. H. Kim, “Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr–Si–N nanocomposite coatings deposited by a hybrid coating system”, Surf. Coat. Technol., 259(2014), p.707–713.
[113] M. Kato, T. Mori, and L. H. Schwartz, “Hardening by spinodal modulated structure”, Acta Metall., 28(1980), p.285-290.
[114] K.-W. Lin, M.-Y. Hwang, and C.-D. Wu, “The deposition and wear properties of cathodic arc plasma deposition TiAlN”, Mater. Chem. Phys., 46(1996) p.77-83.
[115] S.G.Harris, E.D.Doyle, Y.-C. wong, P.R. Munroe, J.M. Cairney, and J.M. Long, “Reducing the macroparticle content of cathodic arc evaporated TiN coatings”, Surf. Coat. Technol., 183(2004), p.283-294.