跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/03 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃頌修
研究生(外文):Huang, Sung-Hsiu
論文名稱:利用過濾式陰極電弧蒸鍍法製備奈米多層硬膜之研究
論文名稱(外文):A Study of Nano-multilayered Thin Films Prepared by Filtered Cathodic Arc Evaporation Method
指導教授:謝宗雍
指導教授(外文):Hsieh, Tsung-Eong
口試委員:謝宗雍李志偉張立周昭昌張銀佑
口試委員(外文):Hsieh, Tsung-EongLee, Jyh-WeiChang, LiChou, Chau-ChangChang, Yin-Yu
口試日期:2015-07-30-07-30
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:112
中文關鍵詞:過濾式陰極電弧蒸鍍法奈米多層硬膜成分調變氮化鋁鈦多層膜碳矽摻雜氮化鉻/氮化鋯奈米多層膜奈米硬度四甲基矽甲烷
外文關鍵詞:Filtered Cathodic Arc Evaporation MethodNano-multilayered Thin FilmsComposition modulated TiAlN multilayered coatingCrSiCN/ZrSiCN multilayered coatingnanoindentation hardnessTetramethylsilane
相關次數:
  • 被引用被引用:1
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
電子封裝製程的微縮化與高頻化使封裝基板從傳統的FR4發展至BT樹脂基板、氧化鋁(Al2O3)、氮化鋁(AlN)等特用基板,由於元件特性及環保需求,電路板加工製程須以乾式切削完成之,故精密機械加工的需求也日趨嚴苛,傳統碳化物及氮化物燒結工具已不敷使用。奈米多層薄膜比單層薄膜具有更佳的硬度與高溫抗氧化性,本論文利用過濾式陰極電弧蒸鍍技術製備奈米多層薄膜以供電路板鑽頭表面硬化之應用。
奈米多層薄膜係將不同鈦鋁(TiAl)成分比例的靶材以及鉻(Cr)、鋯(Zr)靶材相對錯置於蒸鍍腔體的電極之間,同時導入四甲基矽烷(Tetramethylsilane,TMS;Si(CH3)4)做為碳(C)與矽(Si)的摻雜前驅物製備而成,並利用奈米硬度儀、磨耗試驗機及刮痕試驗評估膜層的機械特性,膜層之微觀結構與組成則採用電子微探儀、X光繞射、X光光電子光譜、掃描式電子顯微鏡與高解析穿透式電子顯微鏡等分析之。
實驗結果顯示,利用Ti0.33Al0.66高鋁鈦比靶搭配傳統工業使用的Ti0.5Al0.5鈦鋁靶可製備出Ti0.5Al0.5N/Ti0.33Al0.66N奈米多層氮化物薄膜,並可有效提升薄膜硬度達43.9 GPa,此一多層薄膜同時保有原始TiAlN膜的高溫硬度特性。利用Zr及Cr靶並藉由試片的轉速與電弧電流的控制可製備不同雙層週期厚度與層間比例的奈米多層氮化物薄膜,過去實驗結果顯示CrN/ZrN奈米多層薄膜在雙層週期厚度達到16 nm時有最佳硬度表現;同時C摻雜的最佳製程空間介於3.5-3.7 at.%。利用TMS做為C與Si的摻雜前趨物導入電弧蒸鍍腔中可成功製備出摻雜C與Si之CrSiCN/ZrSiCN奈米多層薄膜,並有效提昇先前CrN/ZrN奈米多層薄膜的硬度(25.2 GPa)與耐刮強度,透過工作壓力與氬氣(Ar)的流量調整同時可提升奈米薄膜的附着性與硬度(31.1 GPa)。

Due to the miniaturization and high-frequency applications of microelectronics, the substrates for electronic package have evolved from conventional FR4 printed circuit board to advanced substrates such as BT resin, Al2O3 and AlN substrates. Presently, the dry machining is the mainstream of substrate manufacture due to the requirements of product functionality and environmental issues. Development of new materials and surface hardening methods for drilling tools is hence critical since traditional cement metal tools such as WC-Co and surface coatings can no longer fulfill the precision of advanced substrate production. Nano-multilayered coatings are known to possess high hardness and high-temperature oxidation resistance in comparison with traditional single layered coatings. This thesis work investigates the nano-multilayered thin films prepared by filtered cathodic arc evaporation (CAE) method so as to explore their applicability to the surface hardening of cutting tools for dry machining.
Nano-multilayered thin films were prepared by interleaving the Ti-Al targets with various composition ratios and Zr/Cr targets at different cathode locations of CAE system. Meanwhile, acetylene (C2H2) and tetramethylsilane (TMS, Si(CH3)4) was introduced during the deposition to supply of carbon (C) and/or silicon (Si) dopants in coating layers. The mechanical properties of coatings were evaluated by nano-indentaion, wear test and scratch test. Microstructures and compositions of samples were characterized by electron probe micro-analyzer, x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy.
Experimental results indicated that the Ti0.33Al0.66N/Ti0.55Al0.55N nano-multilayered thin film with the hardness as high as 43.9 GPa can be achieved by using a combination of an Al-rich Ti0.33Al0.66 target and a traditional Ti0.55Al0.55 target. Notably, such a hard coating layer provided a high hot hardness behavior compared with conventional TiAlN coating. The CrN/ZrN multilayered coatings with different bilayered thicknesses were also prepared by varying the substrate rotation speeds and the arc currents of the Cr/Zr target, and the best properties are achieved when the bilayered thickness is 16 nm and coatings containing 3.5 to 3.7 at.% of C. Bases on previous results, this thesis investigated the effects of TMS as the precursors of C and Si dopants. The process window using TMS was found to be wider than that of the acetylene method. The optimal hardness value (31.1 GPa) was achieved at the coating layer with the composition of 20.2% Cr-26.4% Zr-48.1% N-1.3% Si-2.2% C-1.8% O (in the unit of at.%) prepared at the 50 sccm flow rate of TMS. Meanwhile, the investigation on the influence of working pressure and argon (Ar) flow rate on hardness, adhesion and friction properties of coatings indicated that the lower friction could be achieved by increasing the Ar flow rate and the adhesion could be improved by slightly increasing the working pressure.

Abstract (in Chinese)…i
Abstract (in English)…iii
Acknowledgements…v
Contents…vi
Figure Captions…x
Table Captions…xvi
List of Symbols…xviii
Chapter 1 Introduction…1
Chapter 2 Literature Review…4
2.1 Substrate Technology for Advanced Electronic Packaging …4
2.2 Introduction to nanomultilayered thin film…5
2.2.1 Isostructural Multilayered Coatings …7
2.2.1.1 Single-crystalline superlattice thin films…8
2.2.1.2 Polycrystalline superlattice thih films…9
2.2.1.3 Polycrystalline superlattice thih films without superlattice effect…11
2.2.2 Non-isostructural multilayer Coatings…12
2.2.2.1 Multilayered Coatings with Epitaxial Stabilization Effect ...12
2.2.2.2 Multiphase Multilayered Thin Films/Nanocomposite Coatings…14
2.2.3 Strengthen Mechanism of Multilayered Structures ...15
2.3 Introduction to CAE Process …18
2.3.1 TiAlN Coating…20
2.3.2 ZrN, CrN and ZrN/CrN Multilayer Coatings…22
2.4 Effects of TMS Addition in Metal Nitride Deposition …23
2.5 Motivations…24
Chapter 3 Experimental Details…26
3.1 Sample Preparation …26
3.1.1 Introduction of CAE System…27
3.1.2 Preparation of TiAlN Multilayered Coatings…27
3.1.3 Preparation of CrSiCN/ZrSiCN Multilayered Coatings …30
3.2. Microstructure and Composition Characterizations…32
3.2.1 SEM Analysis …32
3.2.2 EMPA Analysis …33
3.2.3 TEM Analysis …33
3.2.4 XRD Analysis …33
3.2.5 XPS Analysis …34
3.3 Mechanical and Tribological Property Characterizations …35
3.3.1 Nanoindention Test …35
3.3.2 Adhesion Test…36
3.3.3 Wear Track Analysis …36
3.3.4 Measurement of Indentation Toughness…38
3.3.5 Milling and Drilling of Substrates…39
Chapter 4 Result and Discussion…40
4.1. Nano-multilayered TiAlN Coatings …40
4.1.1. Composition and Microstrcure Analyses…40
4.1.2. Mechanical and Tribological Properties…45
4.1.3 Tribilogical Properties …48
4.1.4 Machining Properties and Hot Hardness …50
4.2 CrSiCN/ZrSiCN Multilayered Coatings Prepared at Various TMS Inlet Flows …53
4.2.1 EPMA and XRD Analyses …56
4.2.2 SEM, TEM and XPS Characterizations …62
4.2.3 Mechanical and Tribological Properties …70
4.3 CrSiCN/ZrSiCN Multilayer Coatings Prepared at Various Working Pressures …80
4.3.1 EPMA and XRD Analyses…80
4.3.2 SEM and TEM Characterizations …83
4.3.3 Mechanical and Tribological Properties …84
4.3.4 Machining properties…88
Chapter 5 Conclusions…91
Prospective Works…93
Reference…94
Curriculum Vitae…110


[1] http:\\www.asemal.com.my/Content/Products/Products.
[2] W. Schintlmeister, W. Wallgram, and J. Kanz, “Properties, applications and manufacture of wear-resistant hard material coatings for tools”, Thin Solid Films, 107(1983), p.117-127.
[3] U. Helmersson, S. Todorova, S.A. Barnett, J. E. Sundgren, L.C. Markert, and J. E. Greene, “Growth of single crystal TiN/VN strained layer superlattices with extremely high mechanical hardness”, J. Appl. Phys., 62(2)(1987), p.481-484.
[4] H. Holleck, and H. Schulz, “Preparation and behaviour of wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries”, Surf. Coat. Technol., 36(1988), p.707-714.
[5] H. Holleck, M. Lahres, and P. Woll, “Multilayer coatings-influence of fabrication parameters on constitution and properties”, Surf. Coat. Technol., 41(1990), p.179-190.
[6] P. B. Mirkarimi, L. Hultman, and S.A. Barnett, “Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices”, Appl. Phys. Lett., 57(25)(1990), p.2654-2656.
[7] J. E. Sundgren, J. Birch, G. Hakansson, L. Hultman, and U. Helmersson, “Growth, structural characterization and properties of hard and wear-protective layered materials”, Thin Solid Films, 193-194(1990), p.818-831.
[8] H. Holleck, A. Kumar, Y. W. Chung, J. J. Moore, and J. E. Smugeresky (Eds.), Surface Engineering: Science and Technology I, The Minerals, Metals &; Materials Society, Warrendale, Pennsylvania, (1999), p.207-218.
[9] M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert, “Concepts for the design of advanced nanoscale PVD multilayer protective thin films”, J. Alloys Compd., 483(2009) p.321-333.
[10] H. Holleck, and V. Schier, “Multilayer PVD coatings for wear protection” Surf. Coat. Technol., 76(1995), p.328-336.
[11] P.C. Yashar, and W.D. Sproul, “Nanometer scale multilayered hard coatings”, Vacuum, 55(1999), p.179-190.
[12] M. Shinn, L. Hultman, and S. A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, J. Mater. Res., 7(4)(1992), p.901-911.
[13] P. B. Mirkarimi, S. A. Barnett, K. M. Hubbard, T. R. Jervis, and L. Hultman, “Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(110) superlattices”, J. Mater. Res., 9(6)(1994), p.1456-1467.
[14] X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, and S. A. Barnett, “Deposition and properties of polycrystalline TiN/NbN superlattice coatings”, J. Vac. Sci. Technol. A, 10(4)(1992), p.1604-1609.
[15] X. Chu, S. A. Barnett, M. S. Wong, and W. D. Sproul, “Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings”, Surf. Coat. Technol., 57(1993), p.13-18.
[16] G. Y. Li, Z. H. Han, J. W. Tian, J. H. Xu, and M. Y. Gu, “Alternating stress field and superhardness effect in TiN/NbN superlattice films”, J. Vac. Sci. Technol., A 20(3)(2002), p.674-677.
[17] P. Yashar, S. A. Barnett, J. Rechner, and W. D. Sproul, “Structure and mechanical properties of polycrystalline CrN/TiN superlattices”, J. Vac. Sci. Technol., A 16(5)(1998), p.2913-2918.
[18] S. Logothetidis, N. Kalfagiannis, K. Sarakinos and P. Patsalas, “Investigation of bilayer period and individual layer thickness of CrN/TiN superlattices by ellipsometry and X-ray techniques”, Surf. Coat. Technol., 200(2006), p.6176-6180.
[19] X.T. Zeng, S. Zhang, C.Q. Sun, and Y.C. Liu, “Nanometric-layered CrN/TiN thin films: mechanical strength and thermal stability”, Thin Solid Films, 424(2003), p.99-102.
[20] X. T. Zeng, “TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering”, Surf. Coat. Technol., 113(1999), p.75-79.
[21] W. D. Sproul, “Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings”, Surf. Coat. Technol., 86-87(1996), p.170-176.
[22] L. A. Donohue, W. D. Münz, D. B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov, and I. E. Greene, “Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering”, Surf. Coat. Technol., 93(1997), p.69-87.
[23] W. D. Münz, L. A. Donohue, and P. Eh. Hovsepian, “Properties of various large-scale fabricated TiAlN- and CrN-based superlattice coatings grown by combined cathodic arc-unbalanced magnetron sputter deposition”, Surf. Coat. Technol., 125(2000), p.269-277.
[24] P. Eh. Hovsepian, D. B. Lewis, and W. D. Münz, “Recent progress in large scale manufacturing of multilayer/superlattice hard coatings”, Surf. Coat. Technol., 133-134(2000), p.166-175.
[25] P. Eh. Hovsepian, and W.D. Münz, “Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings”, Vacuum, 69(2003), p.27-36.
[26] P. Eh. Hovsepian, D. B. Lewis, Q. Luo, W. D. Münz, P. H. Mayrhofer, C. Mitterer, Z., and W. M. Rainforth, “TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures”, Thin Solid Films, 485(2005), p.160-168.
[27] Z. Zhou, W. M. Rainforth, B. Rother, A. P. Ehiasarian, P. Eh. Hovsepian, and W. D Münz, “Elemental distributions and substrate rotation in industrial TiAlN/VN superlattice hard PVD coatings”, Surf. Coat. Technol., 183(2004), p.275-282.
[28] M. Kong, N. Shao, Y. S. Dong, J. L. Yue, and G. Y. Li, “Growth, microstructure and mechanical properties of (Ti,Al)N/VN nanomultilayers”, Mater. Lett., 60(2006), p.874-877.
[29] J. Musil, “Hard and superhard nanocomposite coatings”, Surf. Coat. Technol., 125(2000), p.322-330.
[30] J. S. Yoon, H. S. Myung, J. G. Han, and J. Musil, “A study on the synthesis and microstructure of WC–TiN superlattice coating”, Surf. Coat. Technol., 131(2000), p.372-377.
[31] H. Y. Lee, J. G. Han, S. H. Baeg, and S. H. Yang, “Structure and properties of WC–CrAlN superlattice films by cathodic arc ion plating process”, Thin Solid Films, 420-421(2002), p.414-420.
[32] K.W. Lee, Y.H. Chen, Y.W. Chung, and L.M. Keer, “Hardness, internal stress and thermal stability of TiB2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation”, Surf. Coat. Technol., 177-178(2004), p.591-596.
[33] J. Yang, M.X. Wang, Y.B. Kang. and D.J. Li, “Influence of bilayer periods on structural and mechanical properties of ZrC/ZrB2 superlattice”, Appl. Surf. Sci., 253(2007), p.5302-5305.
[34] D. J. Li, M. X. Wang, and J. J. Zhang, “Structural and mechanical responses of (Zr,Al)N/ZrB2 superlattice coatings to elevated-temperature annealing”, Mater. Sci. Eng. A, 423(2006), p.116-120.
[35] P. E. Hovsepian, D. B. Lewis, W. D. Müunz, A. Rouzaud, and P. Juliet, “Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique”, Surf. Coat. Technol., 116-119(1999), p.727-734.
[36] D. B. Lewis, D. Reitz, C. Wüstefeld, R. Ohser-Wiedemann, H. Oettel, A. P. Ehiasarian, and P. Eh. Hovsepian, “Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique”, Thin Solid Films, 503(2006), p.133-142.
[37] C. Reinhard, A. P. Ehiasarian, and P. Eh. Hovsepian, “CrN/NbN superlattice structured coatings with enhanced corrosion resistance achieved by high power impulse magnetron sputtering interface pre-treatment”, Thin Solid Films, 515(2007), p.3685-3692.
[38] D. C. Cameron, R. Aimo, Z. H. Wang, and K. A. Pischow, “Structural variations in CrN/NbN superlattices”, Surf. Coat. Technol., 142-144(2001), p.567-572.
[39] E. Bemporad, C. Pecchio, S. De Rossi, and F. Carassiti, “Characterization and wear properties of industrially produced nanoscaled CrN/NbN multilayer coating”, Surf. Coat. Technol., 188-189(2004), p.319-330.
[40] H. Ljungcrantz, C. Engström, L. Hultman, M. Olsson, X. Chu, M. S. Wong, and W. D. Sproul, “Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering”, J. Vac. Sci. Technol., A, 16(5)(1998), p.3104-3113.
[41] C. Ziebert, and S. Ulrich, “Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization”, J. Vac. Sci. Technol. A, 24(3)(2006), p.554-583.
[42] S. Ulrich, C. Ziebert, M. Stüber, E. Nold, H. Holleck, M. Göken, E. Schweitzer, and P. Schloßmacher, “Correlation between constitution, properties and machining performance of TiN/ZrN multilayers”, Surf. Coat. Technol., 188-189(2004), p.331-337.
[43] A. Rizzo, M.A. Signore, M. Penza, M.A. Tagliente, F. De Riccardis, and E. Serra, “RF sputtering deposition of alternate TiN/ZrN multilayer hard coatings”, Thin Solid Films, 515(2006) p.500-504.
[44] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura, “Formation of cubic-A1N in TiN/A1N superlattice”, Surf. Coat. Technol., 86-87(1996), p.225-230.
[45] A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. David, and S.A. Barnett, “Stabilization of cubic AlN in epitaxial AlN/TiN superlattices”, Phys. Rev. Lett., 78(9)(1997), p.1743-1746.
[46] Q. Li, I. W. Kim, S. A. Barnett, and L. D. Marks, “Structures of AlN/VN superlattices with different AlN layer thicknesses”, J. Mater. Res., 17(5)(2002), p.1224–1231.
[47] J. Lao, Z. Han, J. Tian, and G. Li, “Mechanical property investigation of AlN/VN nanomultilayers with microindentation technique”, Mater. Lett., 58(2004), p.859-862.
[48] S. A. Barnett, A. Madan, I. W. Kim, and K. Martin, “Stability of nanometer-thick layers in hard coatings”, MRS Bull., 28(2003), p.169-172.
[49] G. S. Kim, S. Y. Lee, J. H. Hahn, and S. Y. Lee, “Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process”, Surf. Coat. Technol., 171(2003), p.91-95.
[50] M. Nordin, M. Larsson, and S. Hogmark, “Wear resistance of multilayered PVD TiN/TaN on HSS”, Surf. Coat. Technol., 120-121(1999), p.528-534.
[51] J. H. Xu, M. Kamiko, Y. M. Zhou, R. Yamamoto, G. Y. Li, and M. Y. Gu, “Superhardness effects of heterostructure NbN/TaN nanostructured multilayers”, J. Appl. Phys., 89(7)(2001), p.3674-3678.
[52] H. Söderberg, M. Odén, J. M. Molina-Aldareguia, and L. Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering”, J. Appl. Phys., 97(2005), 114327.
[53] H. Söderberg, M. Odén, T. Larsson, L. Hultman, and J. M. Molina-Aldareguia, “Epitaxial stabilization of cubic-SiNx in TiN∕SiNx multilayers”, Appl. Phys. Lett., 88(2006), 191902.
[54] S. Vepřek, and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, 268(1995), p.64-71.
[55] S. Vepřek, S. Reiprich, and S. H. Li, “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Appl. Phys. Lett., 66(20)(1995), p.2640-2642.
[56] A. Niederhofer, T. Bolom, P. Nesladek, K. Moto, C. Eggs, D. S. Patil, and S. Veprek, “The role of percolation threshold for the control of the hardness and thermal stability of super- and ultra-hard nanocomposites”, Surf. Coat. Technol., 146-147(2001), p.183-188.
[57] P. Karvankova, M. G. J. Veprek-Heijman, O. Zindulka, A. Bergmaier, and S. Veprek, “Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: a comparative study of their properties”, Surf. Coatings Technol., 163-164(2002), p.149-156.
[58] S. Vepřek, “The search for novel, superhard materials “, J. Vac. Sci. Technol. A, 14 (1999), p.2401-2420.
[59] S. Veprek, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Kluwer, Dordrecht, 2004, p.23-33.
[60] S. Vepřek, M. Haussmann, and S. Reiprich, “Superhard nanocrystalline W2N/amorphous Si3N4 composite materials”, J. Vac. Sci. Technol. A, 14(1996), p.46-51.
[61] G. Abadias, A. Michel, C. Tromas, C. Jaouen, and S. N. Dub, “Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings”, Surf. Coat. Technol., 202(2007), p.844-853.
[62] J. S. Koehler, “Attempt to design a strong solid”, Phys. Rev. B, 2(1970), p.547-551.
[62] X. Chu and S.A. Barnett, “Model of superlattice yield stress and hardness enhancements”, J. Appl. Phys., 77(9)(1995), p.4403-4411.
[63] M. S. Wu and H. Y. Wang, “Influence of image forces on the size dependence of multilayer shear strength”, Mech. Mater., 40(2008), p.338-350.
[64] P. J. Martin, R. P. Netterfield, and T. J. Kinder, “Ion-beam-deposited films produced by filtered arc evaporation”, Thin Solid Films, 193(1990), p.77-83.
[65] E. Ertürk, H.J. Heuvel, and H.G. Dederichs, “Comparison of the steered arc and random arc techniques”, Surf. Coat. Technol., 39(1989), p.455-464.
[66] X. Shi, D. I. Flynn, B. K. Tay, and H. S. Tan, U.S. Patent US6031239 A1.
[67] S. PalDey, and S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Mater. Sci. Eng. A, 342(2003), p.58-79.
[68] A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Effects of Al content on hardness, lattice parameter and microstructure of Ti1−xAlxN films”, Surf. Coat. Technol., 120-121(1999), p.438-441.
[69] P. C. Jonson, and H. Randhawa, “Technical note: A review of cathodic arc plasma deposition processes and their applications”, Surf. Coat. Technol., 31(1987), p.303-318.
[70] C. Mendibide, P. Steyer, J. Fontaine, and P. Goudeau, “Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings - An explanation”, Surf. Coat. Technol., 201(2006), p.4119-4124.
[71] J. J. Zhang, M. X. Wang, J. Yang, Q. X. Liu, and D. J. Li, “Enhancing mechanical and tribological performance of multilayered CrN/ZrN coatings”, Surf. Coat. Technol., 201(2007), p.5186-5189.
[72] Z. G. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong, and C. Coddet, “Characterizations of magnetron sputtered CrSiN/ZrN multilayer coatings-from structure to tribological behaviors”, Adv. Eng. Mater., 11(2009), p.667-673.
[73] D. J. Li, F. Liu, M. X. Wang, J. J. Zhang, and Q. X. Liu, “Structural and mechanical properties of multilayered gradient CrN/ZrN coatings”, Thin Solid Films, 506(2006), p.202-206.
[74] Z. G. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong, and C. Codd, “Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings”, Appl. Surf. Sci., 255(2009), p.4020-4026.
[75] N. A. deSánchez, H. E. Jaramillo, Z. Vivas, W. Aperador, C. Amaya, and J. C. Caicedo, “Fracture resistant and wear corrosion performance of CrN/ZrN bilayers deposited onto AISI 420 stainless steel”, Adv. Mater. Res., 38(2008), p.63-75.
[76] Z. G. Zhang, O. Rapaud, N. Allain, M. Baraket, C. Dong, and C. Coddet, “Structure and mechanical properties of nanoscale multilayered CrN/ZrSiN coatings”, J. Vac. Sci. Technol. A, 27(2009) p.672-680.
[77] M. K. Wu, J. W. Lee, Y. C. Chan, H. W. Chen, and J. G. Duh “Influence of bilayer period and thickness ratio on the mechanical and tribological properties of CrSiN/TiAlN multilayer coatings”, Surf. Coat. Technol., 206(2011) p.1886-1892.
[78] F. Cai, X. Huang, Q. Yang, R.H. Wei, and D. Nagy, “Microstructure and tribological properties of CrN and CrSiCN coating”, Surf. Coat. Technol., 205(2010), p.182-188.
[79] Q. Li, F.Q. Jiang, Y.X. Leng, R.H. Wei, and N. Huang, “Microstructure and tribological properties of Ti(Cr)SiCN coating deposited by plasma enhanced magnetron sputtering”, Vacuum, 89(2013), p.168-173.
[80] P.J. Martin, A. Bendavid, J.M. Cairney, and M. Hoffman, “Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition”, Surf. Coat. Technol., 200(2005), p.2228-2235.
[81] B. D. Gullity, and S. R. Stock, Elements of X-ray Diffraction, 3rd Edition, Prentice Hall, New Jersey, (2001) p.367.
[82] G.G. Zhang, L.P. Wang, S.C. Wang, P.X. Yan, and Q.J. Xue, “Structure and mechanical properties of reactive sputtering CrSiN films”, Appl. Surf. Sci., 255(2009), p.4425–4429.
[83] H. Ahn, H. -W. Chen, D. Landheer, X. Wu, L.J. Chou, and T.-S. Chao, “Characterization of interfacial layer of ultrathin Zr silicate on Si(100) using spectroscopic ellipsometry and HRTEM”, Thin Solid Films, 455–456(2004), p.318–322.
[84] Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, “Composition analysis of SiO 2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films”, Appl. Surf. Sci., 184 (2001), p.161-166.
[85] K. Zhiu, X.Y. Wu, X. Zhang, L.Z. Qin, and B. Liao, “Effect on the C2H2 and N2 flow rate on nanocomposited nc-ZrCN/a-C:H(N) film synthesized by filtered cathodic vacuum arc technique”, Surf. Rev. Lett. 15(2008), p.781-786.
[86] M Detroye, F Reniers, C Buess-Herman, and J. Vereecken, “AES–XPS study of chromium carbides and chromium iron carbides”, Appl. Surf. Sci., 144–145(1999), p.78–82.
[87] W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater Res., 7(1992) p.1564-1583.
[88] M. Odén, C. Ericsson, G. Håkansson, and H. Ljungcrantz “Microstructure and mechanical behavior of arc-evaporated Cr–N coatings”, Surf. Coat. Technol.,114 (1999) p.39-51.
[89] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin Solid Films, 270(1995), p.431-438.
[90] H. Jehn, G. Reiners, and N. Siegel (Eds.), DIN Fachbericht 39, Characterisierung Dunner Schichten, Beuth Verlag, Berlin, (1993), p.213.
[91] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, and S. Vepřek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surf. Coat. Technol., 194(2005), p.143-148.
[92] B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, J. Am. Ceram. Soc., 63(1980), p.574-581.
[93] A. Leyland, and A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour”, Wear, 246(2000), p.1-11.
[94] J. Musil, and H. Hrubý, “Superhard nanocomposite Ti1−xAlxN films prepared by magnetron sputtering”, Thin Solid Films, 365,(2000) p.104-109.
[95] M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering”, Thin Solid Films, 339(1999), p.203-208.
[96] C.-T. Huang, and J.-G. Duh, “Deposition of (Ti,Al)N films on A2 tool steel by reactive r.f. magnetron sputtering”, Surf. Coat. Technol., 71(1995), p.259-266.
[97] A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Metastable Ti1-xAlxN films with different Al content”, J. Mater. Sci. Lett., 19(2000), p.601-602.
[98] A.E. Santana, A. Karimi, V.H. Derflinger, and A. Schütze, “Thermal Treatment Effects on Microstructure and Mechanical Properties of TiAlN Thin Films”, Tribology Lett., 4(17)(2004), p.689-696.
[99] A.A. Voevodin, D.V. Shtansky, E.A. Levashov, and J.J. Moore, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Kluwer Academic Publishers, Netherlands, 2004, p.53.
[100] P.C. Jindal, A.T. Santhanam, U. Schleinkofer, and A.F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, Int. J. Refract Met. H., 17(1999), p.163-170.
[101] S.-H. Huang, S.-F. Chen, Y.-C. Kuo, C.-J. Wang, J.-W. Lee, Y.--C. Chan, H.-W. Chen, J.-G. Duh, and T.-E. Hsieh, “Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings”, Surf. Coat. Technol., 206(2011), p.1744-1752.
[102] S.-F. Chen, Y.-C. Kuo, C.-J. Wang, S.-H. Huang, J.-W. Lee, Y.-C. Chan, H.-W. Chen, J.-G. Duh, and T.-E. Hsieh, “The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system”, Surf. Coat. Technol., 231(2013), p.247-252.
[103] C.-Y Tong, J.-W. Lee, C.-C. Kuo, S.-H. Huang, Y.-C. Chan, H.-W. Chen, and J.-G. Duh “Effects of carbon content on the microstructure and mechanical property of cathodic arc evaporation deposited CrCN thin films”, Surf. Coat. Technol., 231(2013), p.482-486.
[104] P. F. Hu, and B. L. Jiang, “Study on tribological property of CrCN coating based on magnetron sputtering plating technique”, Vacuum, 85(2011) p.994-998.
[105] G. G. Fuentes, M. J. Díaz de Cerio, J. A. García, R. Martínez, R. Bueno, R. J. Rodríguez, M. Rico, F. Montalá, and Yi Qin, “Gradient CrCN cathodic arc PVD coatings”, Thin Solid Films, 517(2009) p.5894-5899.
[106] 童正億,以陰極電弧鍍膜系統鍍製CrCN/ZrCN奈米多層薄膜之微結構與機械性質研究,明志科大,碩士論文,民國101年。
[107] S. Binder, W. Lengauer, P. Ettmayer, J. Bauer, J. Debuigne, M. Bohn, “Phase equilibria in the systems Ti-C-N, Zr-C-N and Hf-C-N”, J. Alloys Compd., 217(1995), p.128-136.
[108] M.M. Larijani, M.B. Zanjanbar, and A. Majdabadi, “The effect of carbon fraction in Zr(C,N) films on the nano-structural properties and hardness”, J. Alloys Compd., 492(2010), p.735-738.
[109] C.S. Sandu, R. Sanjinés, M. Benkahoul, F. Medjani, and F. Lévy, “Formation of composite ternary nitride thin films by magnetron sputtering co-deposition”, Surf. Coat. Technol., 201(2006), p.4083–4089.
[110] Q.M. Wang, and K. H. Kim, “Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process”, Acta Materialia, 57(2009) p.4974–4987.
[111] T. Schmitt, P. Steyer, J. Fontaine, N. Mary, C. Esnouf, M. O'Sullivan, and F. Sanchette, “Cathodic arc deposited (Cr,Six)N coatings: From solid solution to nanocomposite structure”, Surf. Coat. Technol., 213(2012) p.117–125.
[112] H.S. Choi, J.H. Jang, T.F. Zhang, J.-H. Kim, I.-W. Park, and K. H. Kim, “Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr–Si–N nanocomposite coatings deposited by a hybrid coating system”, Surf. Coat. Technol., 259(2014), p.707–713.
[113] M. Kato, T. Mori, and L. H. Schwartz, “Hardening by spinodal modulated structure”, Acta Metall., 28(1980), p.285-290.
[114] K.-W. Lin, M.-Y. Hwang, and C.-D. Wu, “The deposition and wear properties of cathodic arc plasma deposition TiAlN”, Mater. Chem. Phys., 46(1996) p.77-83.
[115] S.G.Harris, E.D.Doyle, Y.-C. wong, P.R. Munroe, J.M. Cairney, and J.M. Long, “Reducing the macroparticle content of cathodic arc evaporated TiN coatings”, Surf. Coat. Technol., 183(2004), p.283-294.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top