跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/15 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:于頡
研究生(外文):Yu, Chieh
論文名稱:直接液冷式IGBT模組於電動公車之散熱效能研究
論文名稱(外文):Direct Liquid Cooling for IGBT Module in Application of the Electric Bus
指導教授:陳慶耀
指導教授(外文):Chen, Ching-Yao
口試委員:陳慶耀葉俊良許立傑
口試日期:2015-6-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:直接水冷散熱IGBT模組散熱散熱模擬散熱流道設計
外文關鍵詞:Direct Liquid CoolingIGBT ModuleHeat SinkThermal Simulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:861
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,因為絕緣閘雙極電晶體(IGBT, Insulate Gate Bipolar Transistors)模組功率的提升,間接導致散熱的需求也跟著增加,尤其在電動車輛上,如果晶片溫度超過安全範圍,將使車輛無法行駛,並付出額外的修繕成本。

  本研究為使用商用軟體ANSYS-Fluent模擬純電動公車用之直接液冷(Direct Liquid Cooling)IGBT功率模組在不同流道設計、質量流率、不同進出口位置與鰭片排列型式等條件下的溫度場、速度場與壓力場,藉以分析各種散熱模組的效益,以求得最佳化的IGBT散熱模組設計。模擬結果可知,有圓角S型與W型在散熱與壓降上有較佳的表現,而透過調整進出口位置和鰭片排列角度,平行流道也可達到更好的散熱效能。此外,並透過結合電動公車上的冷暖機、電池組與馬達之散熱,進行整體系統的熱管理之研究,以達到最大的冷卻效益與廢熱利用。

  In recent years, due to increasing power efficiency of an insulated gate bipolar transistor (IGBT) module, the cooling demand of electronic devices has become critical. Especially in the electric vehicles (EVs), if the die temperature exceeds safe limits, the engine system of vehicles will be unable to operate, and pay the extra repair costs.

  This study utilizes ANSYS (Fluent) to simulate the heat dissipation, flow velocity field and pressure loss of direct liquid cooling IGBT module in battery electric vehicle (BEV) systems. And according to the simulation results, the optimization of fin shapes, flow channels and locations of inlet and outlet under different boundary conditions can be obtained. Based on different geometries of channel, S type, parallel channel, W type and W+Pin fin type are adopted in this research. The W type has the most ideal performance both in pressure drop and heat transfer from the results. Besides, the thermal management of the whole electric bus was conducted to achieve the best cooling effect and waste heat utilization by combining the heat exchange of conditioners, battery modules and motors.

摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究目的與背景 7
1.3.1 研究目的 7
1.3.2 電動車簡介 9
1.3.3 電動車用IGBT 10
1.3.4 IGBT原理 12
1.3.5 直接水冷(改良式)與非直接水冷(傳統式)散熱模組 14
第二章 物理模型 16
2.1 物理模型 16
2.2 基本假設 28
2.3 統御方程式與邊界條件 29
第三章 數值方法 32
3.1 數值方法 32
3.2 離散法 33
3.2.1 有限差分法(Finite Difference Method) 33
3.2.2 有限元素法(Finite Element Method) 33
3.2.3 有限體積法(Finite Volume Method) 34
3.3 SIMPLE Algorithm 34
第四章 結果與討論 36
4.1 文獻驗證與網格測試 36
4.2 不同質量流率對散熱與壓降之影響(Case1) 40
4.3 不同流道設計對散熱與壓降之影響(Case2) 44
4.4 不同進出口位置與流場前端鰭片排列型狀對散熱與流速分布之影響(Case3) 52
4.5 不同鰭片角度對散熱與流量分布之影響(Case4) 56
第五章 結論 61
參考文獻 63

[1] Q. Yu, M. Shiratori, “Fatigue-Strength Prediction of Microelectronics Solder Joints under Thermal Cyclic Loading”, IEEE Trans on Components and Packaging Technologies, Vol. 20, NO.3, 1997.
[2] C. Chapman, “The Basics of Package/Device Cooling”, Electronic Packaging and Production, Mc Graw-Hill, pp. 57-60, 1998.
[3] R. R. Tummala, “Fundamentals of Microsystems Packing”, Mc Graw-Hill, 2002.
[4] B. J. Baliga, “Power Semiconductor Devices”, PWS Publications, Boston, 1996.
[5] C.W. Yu, R.L. Webb, “Thermal Design of a Desktop Computer System Using CFD Analysis” IEEE Semi-Therm Symposium, 2001.
[6] T. Y. Lee, “Design Optimization of an Integrated Liquid-Cooled IGBT Power Module Using CFD Technique” IEEE Transactions on Components and Packaging Technologies, Vol.23, No.1, March 2000.
[7] K. T. Chiang, “Optimization of the Design Parameters of Parallel-Plain Fin Heat Sink Module Cooling Phenomenon Based on the Taguchi Method”, IEEE Trans on Industrial Electronic, Vol. 48, No.2, 2001.
[8] C. S. Yun, P. Malberti, M. Ciappa, and W. Fichtner, “Thermal Component Model for Electrothermal Analysis of IGBT Module Systems”, IEEE Transactions on Advanced Packaging, Vol. 24, NO. 3, pp.401-406, August 2001.
[9] S. D. Leet, C. Hong, C. S. Yang, and K. S. Kim, “Development of Water-Cooled Heat Sink for High-Power IGBT Inverter”, IEEE the 7th International Conference on Power.
[10] Y. Cheng, G. Xu, D. Zhu, W. Zhu, L. Luo, “Thermal Analysis for Indirect Liquid Cooled Multichip Module Using Computational Fluid Dynamic Simulation and Response Surface Methodology”, IEEE Trans on Components and Packaging Technologies, Vol. 29, 1, 2006.
[11] K. A. Moores, Y. K. Joshi, “Numerical and Experimental Thermal Characterization of a Liquid Cooled AlSiC Power Electronics Base Plate with Integral Pin Fins”, IEEE, 2000.
[12] S. K. Roy, B. L. Avanic, “An Active Cold Plate for Power Electronics”. IEEE Semi-Thermal Symposium, 2003.
[13] J. S. Kim, W.H. Cha, K. N. Rainey, S. Lee, S. M. You, “Liquid Cooling Module Using FC-72 for Electronics Cooling”, IEEE, 2006.
[14] T. E. Salem, D. Porschet, S. B. Bayne, “Thermal Performance of Water-Cooled Heat Sinks: A Comparison of Two Different Designs”, Semiconductor Thermal Measurement and Management Symposium, 2005 IEEE Twenty First Annual IEEE, 2005.
[15] M. C. Lu, C. C. Wang, “Effect of the Inlet Location on the Performance of Parallel-Channel Cold-Plate”, IEEE Trans on Components and Packaging Technologies, Vol. 29, No. 1, March 2006.
[16] J. G. Maveety, H. H, Jung, “Design of an Optimal Pin-fin Heat Sink with Air Impingement Cooling”, International Communications in Heat and Mass Transfer, Volume 27, Issue 2, Pages 229–240, February 2000.
[17] E. Baker, “Liquid Immersion Cooling of Small electronic Devices”, Microelectronics Reliability, Volume 12, Issue 2, Pages 163–173, April 1973.
[18] 鐘文仁, “IC封裝製程與CAE應用”, 全華出版社(臺灣), 2003。
[19] A. Faiz, C. S. Weaver, M. P. Walsh, “Air Pollution from Motor Vehicles”, World Bank Publications, 1996.
[20] Fiji Times Online, “Electric Car Boom”, Fijitimes.com, 2010.
[21] G. Archer, “Low CVP Report on Carbon Footprint of EV and HEV”, Green Car Congress, 2011.
[22] T. Hitachi, H. Gohara, F. Nagaune, “Direct Liquid Cooling IGBT Module for Automotive Applications”, Fuji Electric Review Vol.58-No.2, 2012.
[23] A. Morozumi, H. Hokazono, Y. Nishimura, Y. Ikeda, Y. Nabetani, Y. Takahashi, “Direct Liquid Cooling Module with High Reliability Solder Joining Technology for Automotive Applications”, Proceedings of The 25th International Symposium on Power Semiconductor Devices &; ICs, Kanazawa, 2013.
[24] T.Y. Lee, “Design Optimization of an Integrated Liquid-Cooled IGBT Power Module Using CFD Technique” IEEE Transactions on Components and Packaging Technologies, Vol.23, No.1, March 2000.
[25] Infineon, http://www.infineon.com/cms/en/product/products.html

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top