跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡承祐
研究生(外文):Tsai, Cheng-Yu
論文名稱:利用AFBR-AFMBR系統處理台灣低濃度生活污水
論文名稱(外文):Start-up and performance evaluation of the AFBR-AFMBR system treating low-strength municipal wastewater in Taiwan
指導教授:林志高林志高引用關係
指導教授(外文):Lin, Jih-Gaw
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:厭氧流體化床反應槽生活污水
外文關鍵詞:anaerobic fluidized bioreactormunicipal wastewater
相關次數:
  • 被引用被引用:0
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
相較於傳統好氧活性污泥法處理污水,厭氧生物處理不僅耗能少還具有產生能源的潛力,因此,已被廣泛應用於處理不同種類的廢水。然而,厭氧生物處理啟動時間較長是其缺點之一,成為限制其實廠化的主要限制因素。本研究利用高效率厭氧流體化床反應槽結合厭氧流體化薄膜反應槽 (AFBR-AFMBR) 在室溫下處理都市污水,目的在探討利用沸石作為載體所需的啟動時間及反應槽表現,及評估利用此系統處理低濃度生活污水之可行性。本研究以1000 mg COD/L合成廢水、水力停留時間 (HRT) 為1 d、有機負荷率 (OLR) 為1 g/m3/d,以半連續模式操作啟動階段。系統操作到第32天,pH值維持在7,化學需氧量 (COD) 去除效率達90%以上,穩定後的產氣量為1 L/d,顯示系統已達穩定。且揮發性懸浮固體物濃度 (VSS) 從100 降至10 mg/L。另外,在室溫 (20 to 35oC) 連續模式操作下處理低濃度真實污水 (73 to 220 mg COD/L),總化學需氧量去除率達70到90%、總懸浮性固體物去除率達96%及0.13 L CH4/g CODremoved之比甲烷產量。且薄膜在薄膜通量10 LMH下操作333天,不須經化學清洗。除此之外,系統所需之總能量僅0.015 kWh/m3,又產生之甲烷可提供能量約0.0024 kWh/m3。以上結果皆顯示厭氧流體化床反應槽結合厭氧流體化薄膜反應槽 (AFBR-AFMBR) 能成功應用在處理低濃度生活污水。
In the present study, an anaerobic fluidized bioreactor combined with an anaerobic fluidized membrane bioreactor (AFBR-AFMBR) was used to for treat municipal wastewater at ambient temperature. The objectives of this study were to evaluate the start-up time and the performance using zeolite as carriers and the performance of the AFBR-AFMBR. During the start-up period, the reactor system was operated in semi-continuous mode and at a hydraulic retention time (HRT) of 1 d and an organic loading rate (OLR) of 1 g/m3/d with influent chemical oxygen demand (COD) of 1000 mg COD/L (made by synthetic wastewater). The reactor system reached to steady state with a pH level of 7, COD removal efficiency higher than 90% and 1 L/d of the steady biogas production. The microorganisms were successfully attached onto the carrier. Thereafter, the reactor system was changed to continuous mode operation at 3.5 h of total HRT for treating municipal wastewater (73 to 220 mg COD/L) at ambient temperature ranged from 20 to 35oC. The reactor performance reached to 70 to 90% of COD removal, 96% of total suspended solids (TSS) removal and 0.13 L CH4/g CODremoved of specific methane production. The membrane module in AFMBR can be continuously used for 333 d at a flux of 10 LMH without chemical cleaning. Besides, the reactor system only needed 0.015 kWh/m3 of pumping energy requirement and can generate 0.0024 kWh/m3 of methane energy. The above results revealed that the AFBR-AFMBR is a high efficiency energy-saving system for treating municipal wastewater.
中文摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
ABBREVIATIONS VIII
CHAPTER 1 INTRODUCTION 1
1.1 Research background 1
1.2 Research motivation 2
1.3 Research objectives 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Anaerobic treatment 4
2.1.1 Mechanisms of anaerobic processes 4
2.1.2 Advantages and disadvantages of anaerobic treatment process 5
2.1.3 Effect of environmental factors 7
2.2 Start-up of the anaerobic treatment system 10
2.2.1 Reactor configuration and operating parameters 10
2.2.2 Carrier type and conditioning 12
CHAPTER 3 MATERIALS AND METHODS 15
3.1 AFBR-AFMBR systems 16
3.2 Reactor operation 17
3.2.1 Phase I: Start-up of AFBR in semi-continuous mode 17
3.2.1.1 Inoculum 17
3.2.1.2 Carrier type 18
3.2.1.3 Synthetic wastewater fed in phase I 18
3.2.1.4 Operating condition 19
3.2.2 Phase II: Operation of AFBR in continuous mode 19
3.2.2.1 Synthetic wastewater fed in phase II 19
3.2.2.2 Operating strategy and condition 20
3.3 Phase III: AFBR integrating with AFMBR in continuous mode 21
3.3.1 Municipal wastewater 21
3.3.2 Operating strategy and condition 22
3.4 Analytical methods 23
3.4.1 Water quality analysis 23
3.4.2 Biogas analysis 23
3.4.3 Microbe observation 24
CHAPTER 4 RESULTS AND DISCUSSION 26
4.1 Phase I and II: acclimation period 26
4.1.1 Variation of environmental parameters (reactor temperature, ORP, pH and alkalinity) 26
4.1.2 Organic removal and biogas production 29
4.1.3 Suspended solid concentration 32
4.2 Phase III: Treatment of municipal wastewater by AFBR-AFMBR system 36
4.2.1 Variation of environmental parameters (reactor temperature, ORP, pH, alkalinity and TMP) 36
4.2.2 Organic removal and biogas production 38
4.2.3 Suspended solid concentration 43
4.2.4 Energy assessment 45
4.3 Microscopic observation 47
4.4 Kinetics modeling 48
4.5 Aerobic vs. Anaerobic processes for treating NCTU wastewater 51
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 52
REFERENCES 54
Appendix A: 口委審查意見表 62
Appendix B: Trouble shooting 64
Appendix C: Nutrients concentration in phase II 65
Appendix D: Nutrients concentration in phase III 67
Appendix E: COD mass balance in phase III 69


Alvarez Cuenca, M., Vezuli, J. and Lohi, S.R. (2006) Anaerobic biodegradation of diesel fuel-contaminanted wastewater in fluidized bed reactor. Bioprocess and Biosystems Energy. Vol. 29, pp. 29-37.

Amorima, E.L.C., Barrosb, A.R., Damianovicb, M.H.R.Z. and Silvab, E.L. (2009) Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy. Vol. 34, pp. 783-390.

APHA, "Standard Methods for the Examination of Water and Wastewater (22th edition)," ed. USA: United Book Press, 2012.

Ahn, J.H. and Forster, C.F. (2000) Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater. Process Biochemistry. Vol. 36, pp. 19–23.

Borja, R. and Banks, C.J. (1995) Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. Journal of Biotechnology. Vol. 39, pp. 251–259.

Bodkhe, S. (2007) Development of an improved anaerobic filter for municipal wastewater treatment. Bioresource Technology. Vol. 99, pp. 222-226.

Bello-Mendoza, R. and Castillo-Rivera, M.F. (1998) Start-up of an Anaerobic Hybrid (UASB⁄Filter) Reactor Treating Wastewater from a Coffee Processing Plant. Environmental Microbiology. Vol. 4, pp. 219–225.

Chan, Y.J., Chong, M.F., Law, C.L. and Hassell, D.G. (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal. Vol. 155, pp. 1–18.

Chou, H.H., Huang, J.S., Chen, W.G. and Ohara, R. (2008) Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters. Bioresource Technology. Vol. 99, pp. 8061-8067.

Chyi, Y.T. and Dague, R.R. (1994). Effects of particulate size in anaerobic acidogenesis using cellulose as a sole carbon source. Water Environmental Research. Vol. 66, pp. 670-678.

Chen, Y.R. and Hashimoto, A.G. (1978) Kinetics of methane fermentation. Biotechnology and bioenergy Symposium. Vol. 8, pp. 269–282.

Dutta, K., Lee, M.Y., Lai, W.P., Lee, C.H., Lin, Y.C., Lin, C.F. and Lin, J.G. (2014) Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresource Technology. Vol. 165, pp. 42-49.

Ferna´ ndeza, N., Montalvob, S., Borjac, R., Guerrerod, L., Sa´ ncheze, E., Corte´ sf, I., Colmenarejoe, M.F., Traviesoc, L. and Raposoc, F. (2008) Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater. Renewable Energy. Vol. 33, pp. 2458-2466.

Fang, C., Boe, K. and Angelidaki, I. (2011) Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresource Technology. Vol. 102, pp. 5734-5741.

Gomec, C.Y. (2010) High-rate anaerobic treatment of domestic wastewater at ambient operating temperatures: A review on benefits and drawbacks. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. Vol. 45, pp. 1169–1184.

Green, M., Mels, A. and Lahav, O. (1996) Biological-ion exchange process for ammonium removal from secondary effluent. Water Science and Technology. Vol. 34, pp. 449-458.

Giménez, J.B., Robles, A., Carretero, L., Durán, F., Ruano, M.V., Gatti, M.N., Ribes, J., Ferrer, J. and Seco, A. (2011) Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fiber membrane bioreactor at pilot scale. Bioresource Technology. Vol. 102, pp. 8799-8806.

Hidalgo, M.D and Garcı́a-Encina, P.A. (2001) Biofilm development and bed segregation in a Methanogenic fluidized bed reactor. Water Research. Vol. 36, pp. 3083-3091.

Ho, J. and Sung, S. (2010) Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology. Vol. 101, pp. 2191–2196.

Harada, H., Uemura, S. and Momonoi, K. (1994) Interaction between Sulfate-Reducing Bacteria and Methane-Producing Bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Research. Vol. 28, pp. 355-367.

Heijnen, J., Mulder, A., Enger, W. and Hoeks, F. (1989) Review on the application of anaerobic fluidized bed reactors in wastewater treatment. Chemical Engineering Journal. Vol. 41, pp. B37-B50.

Huang, Z., Ong, S.L. and Ng, S.Y. (2011) Submerged anaerobic membrane bioreactor for low strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research. Vol. 45, pp. 705–713.

Ingvorsen, K., Zehnder, A.J.B. and Jorgensen, B.B. (1984) Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Applied and Environmental Microbiology. Vol. 47, pp. 403-408.

Ilter Turkdogan-Aydinol, F., Yetilmezsoy, K., Comez, S. and Bayhan H. (2011) Performance evaluation and kinetic modeling of the start-up of a UASB reactor treating municipal wastewater at low temperature. Bioprocess and Biosystems Engineering. Vol. 34, pp.153-162.

Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P.L. and Bae, J. (2011) Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science and Technology. Vol. 45, pp. 576–581.

Khanh, D., Quan, L., Zhang, W., Hira, D. and Furukawa, K. (2011) Effect of temperature on low-strength wastewater treatment by UASB reactor using poly (vinyl alcohol)-gel carrier. Bioresource Technology. Vol.102, pp. 11147-11154.

Kato, M.T. (1994) The anaerobic treatment of low strength soluble wastewater. Ph.D. Thesis. Wageningen University.

Kato, M.T., Rebc, S. and Lettinga, G. (1999) Anaerobic treatment of low-strength brewery wastewater in expanded granular sludge bed reactor. Applied Biochemistry and Biotechnology. Vol. 76, pp. 15-32.

Kapdan, I.K. and Erten, B. (2007) Anaerobic treatment of saline wastewater by Halanaerobium lacurosei. Process Biochemistry. Vol. 42, pp. 449–453.

Lema, J.M., Mendez, R. and Blazquez, R. (1998) Characteristics of landfill leachates and alternatives for their treatment: a review. Water Air and Soil Pollutant. Vol. 40, pp. 223–250.

Lettinga, G., Roersma, R. and Grin, P. (1983) Anaerobic Treatment of Raw Domestic Sewage at Ambient Temperatures Using a Granular Bed UASB Reactor. Biotechnology and Bioengineering. Vol. 25, pp. 1701-1723.

McCarty, P.L., Bae, J. and Kim, J. (2011) Domestic wastewater treatment as a net energy producer - Can this be achieved? Environmental Science and Technology. Vol. 45, pp. 7100-7106.

Martin, I., Pidou, M., Soares, A., Judd, S. and Jefferson, B. (2011) Modeling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology. Vol. 32, pp. 921-932.

Masse, D.I., Masse, L. and Croteau, F. (2003) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresource and Technology. Vol. 89, pp. 57-62.

McCarty, P.L. (1964) Anaerobic treatment fundamentals. Part two, Environmental
Requirement and Control. Public Works. Vol. 10, pp. 123-126.

Mass’e, D. I. and Masse, L. (2001) The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing reactors. Bioresource Technology. Vol. 76, pp. 91-98.

Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F. and Horn, H. (2011) Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresource Technology. Vol. 102, pp. 10377-10385.

O’Reilly, C. and Colleran, E. (2006) Effect of influent COD/SO42- ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties. Federation of European Microbiological Societies. Vol. 56, pp. 141-153.

Omil, F., Garrido, J.M., Arrojo, B. and Mendez, R. (2003) Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale. Water Research. Vol. 37, pp. 4099-4108.

Pakarinen, O., Kaparaju, P. and Rintala, J. (2011) The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR. Bioresource Technology. Vol. 102, pp. 8952-8957.

Perez, M., Rodriguez-Cano, R., Romero, L.I., Sales, D. (2007) Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater. Biorescource Technology. Vol. 98, pp. 3456-3463.

Rittman, B.E. and McCarty, P.L. (2001) Environmental Biotechnology: Principal & Applications. McGrawHill, Inc., USA, pp. 6-11, 577-578.

Rizvi, H., Ahmad, N., Abbas, F., Bukhari, I.H., Yasar, A., Ali, S., Yasmeen, T. and Riaz, M. (2014) Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arabian Journal of Chemistry. Vol. XX, pp. XX-XX.

Rebac, S., Van Lier, J.B., Janssen, M.G.J., Dekkers, F., Swinkels, Koen Th.M., and Lettingaa, G. (1997) High-Rate Anaerobic Treatment of Malting Waste Water in a Pilot-Scale EGSB System Under Psychrophilic Conditions. Journal of Chemical Technology and Biotechnology. Vol. 68, pp. 135-146.

Singh, K. S., Harada, H. and Viraraghavan, T. (1996) Low-strength wastewater treatment by a UASB reactor. Bioresource Technology. Vol. 55, pp. 187-194.

Seghezzo, L., Zeeman, G., Van Lier, J.B., Hamelers, H.V.M. and Lettinga, G. (1998) A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology. Vol. 65, pp. 175-190.

Sanchez, E., Milan, Z., Borja, R., Weiland, P. and Rodriguez, X. (1995) Piggery waste treatment by anaerobic digestion and nutrient removal by ionic exchange. Resources Conservation and Recycling. Vol. 15, pp. 235-244.

Skouteris, G., Hermosilla, D., López, P., Negro, C. and Blanco, A. (2012) Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal. Vol. 198–199, pp. 138–148.

Speece, R. E. (1996) Anaerobic Biotechnology for Industrial Wastewaters. Environmental Science and Technology. Vol. 17, pp. 416A-427A.

Singh, K.S., and Viraraghavan, T. (2003) Impact of temperature on performance, microbiological, and hydrodynamic aspects of UASB reactors treating municipal wastewater. Water Science and Technology. Vol. 48, pp. 211-217.

Shin, C., Lee, E., McCarty, P.L. and Bae, J. (2011) Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater. Bioresource Technology. Vol. 102, pp. 9860-9865.

Schonheit, P., Kristjansson, J.K. and Thauer, R.K. (1982) Kinetic mechanism for the ability of sulfate reducers to outcompete methanogens for acetate. Archives Microbiology. Vol. 132, pp. 285-288.

Sanz, I. and Fdz‐Polanco, F. (1989) Anaerobic treatment of municipal sewage in UASB and AFBR reactors. Environmental Technology Letters. Vol. 10, pp. 453-462.

Sen, S. and Demirerb, G.N. (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research. Vol. 37, pp. 1868-1878.

Saravanane, R. and Murthy, D.V.S. (2000) Application of anaerobic fluidized bed reactors in wastewater treatment: a review. Environmental Management and Health. Vol. 11, pp. 97-117.

Suryawanshi, P.C., Chaudhari, A.B. and Kothari, R.M. (2010). Thermophilic anaerobic digestion: the best option for waste treatment. Critical Reviews in Biotechnology. Vol. 30 (1), pp. 31-40.

Tahti, H., Kaparaju, P. and Rintala, J. (2013) Hydrogen and methane production in extreme thermophilic conditions in two-stage (upflow anaerobic sludge bed) UASB reactor system. Hydrogen Energy. Vol. 38, pp. 4997-5002.

Takahashi, M., Ohya, A., Kawakami, S., Yoneyama, Y., Onodera, T., Syutsubo, K.,
Yamazaki, S., Araki, N., Ohashi, A., Harada, H. and Yamaguchi, T. (2011) Evaluation of Treatment Characteristics and Sludge Properties in a UASB Reactor Treating Municipal Sewage at Ambient Temperature. International Journal of Environmental Research. Vol. 5 (4), pp. 821-826.

Tchobanoglous, G., Theisen, H. and Vigil, S. (1993) Integrated Waste Management: Engineering Principles and Management Issues. McGraw-Hill, New York.

Valcke, D. and Verstraete, W. (1983) A practical method to estimate the acetoclastic methanogenic biomass in anaerobic sludge. Journal of Water Pollution Control Federation. Vol. 55, pp. 1191-1195.

Venkatesh, K.R., Rajendran, M. and Murugappan, A. (2013) Start-Up Of An Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Wastewater Inoculated With Non-Granular Sludge. International Refereed Journal of Engineering and Science. Vol. 2, pp. 46-53.

Wiegel, J. (1990) Temperature spans for growth: hypothesis and discussion. FEMS Microbiology Revolution. Vol. 75, pp. 155-170.

Yule, H. and Anderson, G.K. (1996) Performance of a combined anaerobic reactor for municipal wastewater treatment at ambient temperature. Resources, Conservation and Recycling. Vol. 17, pp. 259-271.

Yoo, R., Kim, J., McCarty, P.L., Bae, J. (2012) Anaerobic treatment of municipal wastewater with staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresource Technology. Vol. 120, pp. 133-139.

Yoda, M., Kitagawa, M. and Miyaji, Y. (1987) Long-term competition between sulfate-reducing bacteria and methane producing bacteria in anaerobic biofilm. Water
Research. Vol. 21, pp. 1547-1556.

Yuceer, S. (2006) Investigated effect of temperature to substrate removal kinetic in anaerobic filter. M.Sc., Thesis, Cukurova University, Institute of Science, Department of Environmental Engineering, Adana.

Zhang, Z.P., Tay, J.H., Show, K.Y., Yan, R., Liang, D.T., Lee, D.J. and Jiang, W.J. (2007) Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Hydrogen energy. Vol. 32, pp. 185-191.

Zhang, B., Zhang, L.L., Zhang, S.C., Shi, H.Z. and Cai, W.M. (2010) The Influence of pH on Hydrolysis and Acidogenesis of Kitchen Wastes in Two-phase Anaerobic Digestion. Environmental Technology. Vol. 26, pp. 329-339.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top