跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡朝和
研究生(外文):Tsai, Chao-Ho
論文名稱:利用溶膠-凝膠法製作氧化鋁披覆於摻雜鎂之鋰鎳鈷錳氧材料以改善其高溫循環壽命
論文名稱(外文):Fabrication of AlOx coating on Mg-doped LiNi0.5Co0.2Mn0.3O2¬¬ by the sol-gel method to improve high-temperature cyclability for lithium ion batteries
指導教授:裘性天
指導教授(外文):Chiu, Hsin-Tien
學位類別:碩士
校院名稱:國立交通大學
系所名稱:理學院應用科技學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:35
中文關鍵詞:鋰鎳鈷錳氧溶膠-凝膠法循環壽命
外文關鍵詞:lithium ion batteriessol-gelLiNi0.5Co0.2Mn0.3O2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在鋰離子電池發展中,鋰鎳鈷錳氧化物(LiNi0.5Co0.2Mn0.3O2)是近幾年來相當受矚目的正極材料。主要的原因是因為其能有效彌補傳統鋰鈷材料(LiCoO2)放電電容量較低的問題,同時也改善高鎳系材料(LiNiO2)熱穩定性不足的缺陷。然而,鋰鎳鈷錳氧化物因其仍富含較高的鎳含量,使得氧化物中三價的鎳容易還原成二價而與氧結合造成較高的不可逆電容量並使循環壽命降低。因此,希望藉由表面改質的方式,能夠有效改善上述提及的問題。此篇研究利用溶膠-凝膠法的表面改質方法,測試在不同金屬氧化物前驅物、不同披覆劑量、溶劑改變與低溫燒結條件以尋求非傳統形貌的金屬氧化物披覆,進而下提升其高溫循環壽命。而本篇研究所改質出的鋁氧化物披覆於参雜鎂之鋰鎳鈷錳氧化物在鋰離子半電池壽命高溫測試(55oC),經過將近300圈的充放電後仍有113.6mAh/g的電容量(殘存電容量為73.1%)。
我們利用XRD、SEM、TEM、EDX、DSC 與AC impedance等分析輔助討論粉體表面改質與電化學電性測試的結果,希望能發展出一簡單、便宜並能有效改善循環壽命的改質方法。

In the development of lithium-ion batteries, LiNi0.5Co0.3Mn0.2O2 has been paid more attention for cathode materials. The high discharging capacity and thermal stability which compensate for the insufficient capacity of LiCoO2 and the drawback of Ni-rich cathode, respectively, are the leading reason. However, owing to the higher Ni content of LiNi0.5Co0.3Mn0.2O2, unstable Ni3+ ions were prior to reduce to Ni2+ on the cathode surface in the form of NiO and leads to higher irreversible capacity and poor cycle life. Therefore, we make efforts to solve these problems mentioned above by surface modification. This study, by sol-gel method of surface modification, was aimed to search for non-tradition metal oxide coating to improve cyclability at high temperature by testing different metal oxide precursors, coating amounts, solvents, and lower annealing condition. In this study, the lithium-ion half battery testing cyclability at 55oC for AlOx coating on Mg-doped LiNi0.5Co0.3Mn0.2O2 was kept to 300 cycles, with capacity of 113.6mAh/g in the capacity retention of 73.1%.
By the analysis of XRD (X-ray diffraction)、SEM (Scanning electron microscope)、TEM (Transmission electron microscope)、EDX (Energy dispersive X-ray)、DSC (Differential scanning calorimetry) and AC impedance (Alternating current impedance) for surface modification of cathode and the result of cyclability, we look forward to set up a simple and low-cost modifying method improving cycle life.

Chapter 1 Introduction 1
1.1 Development of Lithium Ion Batteries..........1
1.2 Introductions of Lithium Ion Batteries........1
1.3 Studies of Cathode Materials..................3
Chapter 2 Experimental Sections................7
2.1 Materials.....................................7
2.2 Surface Modification of Mg-Doped LiNi0.5Co0.2Mn0.3O2 by Sol-Gel Method.................................8
2.3 Materials Characterizations...................9
2.4 Electrochemical Evaluations..................10
2.4.1 Fabrication of Lithium Ion Half-Cells......10
2.4.2 Differential Scanning Calorimetry..........11
2.4.3 Electrochemical Impedance Spectroscopy.....12
Chapter 3 Results and Discussion..............13
3.1 Different Metal Oxides Coating...............13
3.2 Effect of Different Coating Amounts..........15
3.3 Effect of Different Solvents.................19
3.4 Effect of Different Anneal Conditions........23
3.5 Electrochemical Evaluations of Bare and AlOx-Coated Cathode..........................................26
3.5.1 DSC Analysis...............................29
3.5.2 AC Impedance Analysis......................30
Chapter 4 Conclusion .........................32
Reference........................................33

(1)Gao, J.; Kim, J.; Manthiram, A. Electrochemistry Communications 2009, 11, 84.
(2)Tarascon, J.-M. A., M. Nature 2001, 414.
(3)Whittingham, M. S. Chemical Reviews 2004, 104, 4271.
(4)Scrosati, B. Electrochimica Acta 2000, 45, 2461.
(5)Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Journal of Power Sources 2005, 147, 269.
(6)Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y. Solid State Ionics 2006, 177, 1509.
(7)Choi, J.; Manthiram, A. Electrochemical and Solid-State Letters 2005, 8, C102.
(8)Lee, Y.-S.; Ahn, D.; Cho, Y.-H.; Hong, T. E.; Cho, J. Journal of The Electrochemical Society 2011, 158, A1354.
(9)Cho, Y.; Cho, J. Journal of The Electrochemical Society 2010, 157, A625.
(10)Cho, J.; Kim, T.-J.; Kim, J.; Noh, M.; Park, B. Journal of The Electrochemical Society 2004, 151, A1899.
(11)Belharouak, I.; Lu, W.; Vissers, D.; Amine, K. Electrochemistry Communications 2006, 8, 329.
(12)Jo, M.; Jeong, S.; Cho, J. Electrochemistry Communications 2010, 12, 992.
(13)Lee, K.; Myung, S.-T.; Amine, K.; Yashiro, H.; Sun, Y. K. Meeting Abstracts 2007, MA2007-02, 154.
(14)Arai, H.; Tsuda, M.; Saito, K.; Hayashi, M.; Sakurai, Y. Journal of the Electrochemical Society 2002, 149, A401.
(15)Milewska, A.; Molenda, M.; Molenda, J. Solid State Ionics 2011, 192, 313.
(16)Pouillerie, C.; Croguennec, L.; Delmas, C. Solid State Ionics 2000, 132, 15.
(17)Woo, S. W.; Myung, S. T.; Bang, H.; Kim, D. W.; Sun, Y. K. Electrochimica Acta 2009, 54, 3851.
(18)Albrecht, S.; Kümpers, J.; Kruft, M.; Malcus, S.; Vogler, C.; Wahl, M.; Wohlfahrt-Mehrens, M. Journal of Power Sources 2003, 119–121, 178.
(19)Chang, C. C.; Kim, J. Y.; Kumta, P. N. Journal of the Electrochemical Society 2000, 147, 1722.
(20)Ueda, A.; Ohzuku, T. Journal of the Electrochemical Society 1994, 141, 2010.
(21)Chen, Z.; Qin, Y.; Amine, K.; Sun, Y. K. Journal of Materials Chemistry 2010, 20, 7606.
(22)Cho, Y.; Lee, Y.-S.; Park, S.-A.; Lee, Y.; Cho, J. Electrochimica Acta 2010, 56, 333.
(23)Chowdari, B.; Subba Rao, G.; Chow, S. Journal of Solid State Electrochemistry 2002, 6, 565.
(24)Wang, H.; Deng, Z.; Chen, M. Journal of Rare Earths 2009, 27, 234.
(25)Kim, J.-S.; Johnson, C. S.; Vaughey, J. T.; Hackney, S. A.; Walz, K. A.; Zeltner, W. A.; Anderson, M. A.; Thackeray, M. M. Journal of the Electrochemical Society 2004, 151, A1755.
(26)Xiong, X.; Jiang, Y.; Xia, S.; Zhang, W.; Yuan, L.; Liu, S.; Huang, Y. Chinese Science Bulletin 2010, 55, 3419.
(27)Oh, S.; Lee, J. K.; Byun, D.; Cho, W. I.; Won Cho, B. Journal of Power Sources 2004, 132, 249.
(28)Sun, Y.-K.; Cho, S.-W.; Lee, S.-W.; Yoon, C. S.; Amine, K. Journal of the Electrochemical Society 2007, 154, A168.
(29)Woo, S.-U.; Yoon, C. S.; Amine, K.; Belharouak, I.; Sun, Y.-K. Journal of The Electrochemical Society 2007, 154, A1005.
(30)Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Yashiro, H. Journal of the Electrochemical Society 2008, 155, A705.
(31)Ning, L. J.; Wu, Y. P.; Fang, S. B.; Rahm, E.; Holze, R. Journal of Power Sources 2004, 133, 229.
(32)Onoki, T. Porous Apatite Coating on Various Titanium Metallic Materials via Low Temperature Processing, 2011.
(33)Wu, Y.; Todd, T. D.; Shirani, S. Journal of Parallel and Distributed Computing 2003, 63, 45.
(34)Wu, Y. P.; Rahm, E.; Holze, R. Electrochimica Acta 2002, 47, 3491.
(35)Pan, C.-c.; Banks, C. E.; Song, W.-x.; Wang, C.-w.; Chen, Q.-y.; Ji, X.-b. Transactions of Nonferrous Metals Society of China 2013, 23, 108.
(36)Li, C.; Zhang, H. P.; Fu, L. J.; Liu, H.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. Electrochimica Acta 2006, 51, 3872.
(37)Kosova, N. V.; Devyatkina, E. T. Journal of Power Sources 2007, 174, 959.
(38)Huang, Y.; Chen, J.; Cheng, F.; Wan, W.; Liu, W.; Zhou, H.; Zhang, X. Journal of Power Sources 2010, 195, 8267.
(39)Chen, Y.; Zhang, Y.; Chen, B.; Wang, Z.; Lu, C. Journal of Power Sources 2014, 256, 20.
(40)Cho, J.; Kim, C. S.; Yoo, S. I. Electrochemical and Solid-State Letters 2000, 3, 362.
(41)Earnshaw, N. N. G. a. A. 1997.
(42)Zhang, Z. R.; Liu, H. S.; Gong, Z. L.; Yang, Y. Journal of Power Sources 2004, 129, 101.
(43)Liu, H.; Zhang, Z.; Gong, Z.; Yang, Y. Solid State Ionics 2004, 166, 317.
(44)Li, Y.-D.; Zhao, S.-X.; Nan, C.-W.; Li, B.-H. Journal of Alloys and Compounds 2011, 509, 957.
(45)Alexander, M.R.; Thompson, G. E; Beamson, G. Characterization of the Oxide/Hydroxide
Surface of Aluminum Using X-ray Photoelectron Spectroscopy: A Procedure for Curve Fitting the O 1s Core Level, 2000; Vol. 29.
(46)Zhong, Q; Banakdarpour, A; Zhang, M ; Gao, Y; Dahn, J.-R. J. Electrochem. Soc. 1996, 144, 205.
(47)Ein.Eli, Y.; Howard Jr, W.-F. J. Electrochem. Soc. 1997, 144, L205.
(48)Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J. J. Electrochem. Soc. 2005, 152, A1409.
(49)Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.-M. Electrochim. Acta 2007, 52, 5422.
(50)Kostecki, R.; McLarnon F. Electrochem. Solid State Lett. 2004, 7, A380.
(51)Barsoukov, E.; Macdonald, J.-R. Impedance Spectroscopy - Theory, Experiment, and Applications, second ed., John Wiley 2005, (Chapter 4.5).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top