跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/03 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴定豪
研究生(外文):Lai, Ting-Hao
論文名稱:電源功率元件中減少閘極漏電流及崩潰電壓的改善方式研究
論文名稱(外文):Improved Passivation of GaN MIS-HEMT for Power Application
指導教授:張翼張翼引用關係
指導教授(外文):Chang, Edward Yi
口試委員:張立 教授謝宗雍 教授
口試日期:2015-03-03
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院半導體材料與製程設備學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:54
中文關鍵詞:電源功率閘極漏電流崩潰電壓
外文關鍵詞:GaNMIS-HEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有許多論文已證明在氮化鋁鎵利用高介電常數材料製程可顯著的改善高功率元件氮化鋁鎵/氮化鎵高電子遷移率電晶體的性能和可靠度,同時也降低崩潰電壓。氮化鋁鎵/氮化鎵高電子遷移率電晶體已經被廣泛研究並證明其高功率應用之能力。而在本論文中,運用電漿輔助化學氣相沉積系統所沉積的高介電材料氮化矽作為氮化鋁鎵的表面隔離層以降低閘極漏電流和崩潰電壓。
實驗過程中,為了最佳化元件本身的特性。在沉積的高介電材料氮化矽作為氮化鋁鎵的表面隔離層前系統化的利用不同的氣體CF4/NH3/N2O/N2 作為氮化鋁鎵的表面處理來改善高功率元件氮化鋁鎵/氮化鎵高電子遷移率電晶體的性能和可靠度。根據實驗結果,最後以N2作為此實驗的氮化鋁鎵表面處理氣體。因為N2作為氮化鋁鎵的表面處理可得到最小的漏電流和最大的汲極導通電流。
藉由此次實驗的結果清楚有效的發現利用N2作氮化鋁鎵的表面處理和高介電材料氮化矽作為氮化鋁鎵的表面隔離層,此種最佳的組合搭配來可得到閘極漏電流和崩潰電壓明顯的改善和降低。

There are many researches demonstrated that the high-K passivation can significantly improve the AlGaN/GaN MIS-HEMT performance and reduce gate leakage and current collapse. In this thesis we focus on SiN as the gate insulation on GaN device.
We present a systematic study on AlGaN surface treatment by CF4/NH3/N2O/N2 prior to SiN deposition to enhance the reliability of the AlGaN/GaN MIS-HEMT. We chose N2 treatment be this experiments treatment gas. Owing to N2 treatment can get smallest leakage current and biggest Drain current, among these treatment gases,
We summarize this experiment and easy to get significantly MIS-HEMT performance improvement by N2 treatment process and SiN passivation layer deposition.

Chapter 1 Introduction
1.1 General Background ………………………………….………………12
1.2 Motivation ……………………………………………………………15
1.3 Thesis contents ………...………………………………….....……….16
Chapter 2 Literature Review
2.1 Basics of AlGaN/GaN HEMTs ……………………………………….17
2.2 Material Characteristics ………………………………………………18
2.2.1 The Wurtzite Structure and Spontaneous Polarization ………....18
2.2.2 Spontaneous and Piezoelectric Polarization ……………………22
2.3 Principles Of AlGaN/GaN HEMT and Carrier Transport ……………24
2.4 Trapping Effects In GaN-Based and HEMTs 27
Chapter 3 Experimental Methods
3.1 Wafer Cleaning 30
3.2 Mesa Isolation 30
3.3 Ohmic Contact Formation 31
3.4 N2 Plasma Treatment 31
3.5 SiN Gate Dielectric and Passivation…………………………………..32
3.6 Schottky – Gate Formation……………………………………………33
Chapter 4 Results and Discussion
4.1 Treatment Gas Evaluation 37
4.2 DC Characteristics Measurements 38
4.3 Possible Leakage Paths Measurements 39
4.4 Current collapse analysis 40
4.5 C-V Characteristics Measurements 40
Chapter 5 Conclusion
Conclusions 49
References 50

[1] M.A Khan , Appl. Phys. Lett. 63 1214 (1993)
[2] NEC, IEEE Trans. on MTT, vol. 52, No. 11, p. 2536
[3] Fujitsu, MTT-S Digest, 2004, p 1347
[4] Cree, IEEE Electr. Dev. Lett., vol. 25, N0. 3, p. 117
[5] Cree, IEEE International Electron Devices Meeting (IEDM) Technical digest,2001.
[6] NEC, IEEE trans. on MTT, vol. 53, N0. 1, p. 74
[7] IAF, IEEE International Electron Devices Meeting (IEDM) Technical digest, 2003
[8] S.J Pearton et al., J. Appl. Phys. 86, 1 (1999)
[9] M. A. Khan et al., “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions,” Appl. Phys. Lett., vol. 60, p. 3027-3029, Jun. 1992
[10] U. K. Mishra, P. Parikh, and Y. F. Wu, "AlGaN/GaN HEMTs - An overview of device operation and applications," Proceedings of the IEEE, vol. 90, p. 1022-1031, Jun. 2002
[11] Y. F. Wu et al.,“ Very high power density AlGaN/GaN HEMTs,”
IEEE Trans. Electron Dev., vol. 48, p. 586-590, Aug. 2002
[12] H. P. Maruska, J. J. Tietjen, “The preparation and properties of vapor – deposited single crystal line GaN”, Applied Physics Letters, vol. 15, p. 327-329, Nov. 1969.
[13] J. I. Pankove, E. A. Miller, J. E. Berkeyheiser, “GaN bluelight – emitting diodes”, J. Luminescence, vol. 5, p. 84-88, 1972.
[14] M. Asif Khan, J. M. Van Hove, J. N. Kuznia, and D. T. Olson,
“High electron mobility GaN/AlxGa1-xN hetrostructures grown by
low-pressure .. etalorganic chemical vapor deposition”, 98 Applied
Physics Letters, vol. 58, p.2408-2410, Mar. 1991.
[15] M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson,
“Metal semiconductor field effect transistor based on single crystal
GaN”, Applied Physics Letters, vol. 62, p.1786-1787, Jan. 1993.
[16] Y.-F. Wu B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy,
SP. Denbaars, and U. K. Mishra,“Very high breakdown Voltage and large transconductance realized on GaN heterojunction field effect transistors”, Applied Physics Letters, vol. 69, p 1438-1440, Jul. 1996.
[17] J. Burm, W. J. Schaff, L. F. Eastman, H. Amano, and I. Akasaki, “75
A GaN channel modulation doped field effect transistors”, Applied Physics Letters, vol. 68, p. 2849-2851, Mar. 1996.
[18] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and
T. Ogura, “High Breakdown Voltage Undoped AlGaN–GaN Power
HEMT on Sapphire Substrate and Its Demonstration for DC–DC
Converter Application”, IEEE Trans. Electron Device, vol. 51, p.
1913-1917, Nov. 2004.
[19] K. K. Chu, P. C. Chao, M. T. Pizzella, R. Actis, D. E. Meharry, K. B
Nichols, R. P. Vaudo, X. Xu, J. S. Flynn, J.Dion, and G.R. Brandes,
“9.4-W/mm Power Density AlGaN–GaN HEMTs on Free-Standing GaN Substrates”,IEEE Electron Device Letters, vol. 25, p. 596-598, Sep. 2004.
[20] B. S. Kang, S. Kim, F. Ren, J. W. Johnson, R. J. Therrien,
P.Rajagopal. J. C. Roberts, E. L. Piner, K. J. Linthicum, S. N. G. Chu, K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton,
Pressure-induced changes in the conductivity of AlGaN/GaN
high-electron mobility-transistor membranes”, Applied Physics
Letters, vol. 85, p. 2962-2964, 2004.
[21] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W.C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light
Emission From Near UV InGaN–GaN LED Chip Precoated With
Blue/Green/Red Phosphors”, IEEE Photonics Technology Letter, vol. 15, p. 18-20, Jan. 2003.
[22] T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya,
T.Hino, S. Uchida, and M. Ikeda, “100-mW Kink-Free Blue-Violet
Laser Diodes With Low Aspect Ratio”,IEEE Journal of Quantum
Electronics, vol. 39, p. 135-140, Jan., 2003.
[23] S. J. Pearton, “GaN and Related Materials”, Gordon and Breach Science Publishers, 1997.
[24] V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, A. Zubrilov, “In
Properties of Advanced Semiconductor Materials GaN, AlN, InN,
BN, SiC, SiGe”, John Wiley &; Sons, Inc., New York, 2001.
[25] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M.
Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, and
M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional
electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN terostructures” J. Applied Physics, vol. 85, p. 3222-3232, Mar. 1999.
[26] H. W. Jang, J. H. Lee, and J. L. Lee, “Characterization of band
bendings on Ga-face and N-face GaN films grown by metalorganic
chemical-vapor deposition”, Applied Physics Letters, vol. 80, p.
3955-3957, May. 2002.
[27] P.R. Tavernier, T. Margalith, J. Williams, D.S. Green, S.Keller, S.P.
DenBaars, U.K. Mishra, S. Nakamura, D.R. Clarke, “The growth
of N-face GaN by MOCVD:effect of Mg, Si, and In”, J.Crystal
Growth, vol. 264, p. 150-158, 2004.
[28] Masahiro Ishida,” GaN power switching devices,”
International Power Electronics Conference (IPEC), p. 1014-1017,
Jun. 2010.
[29] M. Yanagihara,” Recent advances in GaN transistors for future
emerging applications,” Physica Status Solidi(a), vol. 206, p.
1221-1227, Jan. 2009
[30] T. Ueda, T. Tanaka and D. Ueda,” GaN transistors for power
switching and millimeter-wave applications,” International
Journal of High Speed Electronics and Systems, vol. 19, p.
145-152, 2009
[31] Joachim Würfl,” Technology and perspectives of GaN devices for
innovative microwave applications,” Microwave conference
(GeMIC), German , p. 1-4, Mar. 2008
[32] S.N. Mohammad, A. Salvador, and H. Morkoc “Emerging Gallium Nitride Based Devices,” Proceedings of the IEEE., 83, 10, (1995).



[33] S. T. Bradley, A. P. Young, L. J. Brillson, M. J. Murphy, W. J. Schaff, and L. F. Eastman, “Influence of AlGaN deep level defects on
AlGaN/GaN 2DEG carrier confinement,” IEEE Trans. Electron
Devices, vol. 48, no. 3, p. 412–415, Mar.2001.
[34] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, and J. M. Redwing,“Deep traps in high resistivity AlGaN films,” Solid-State Electron.,
vol. 42, no. 5, p. 831–888, May 1998
[35] Maziar Morardi and Pouya Valizadeh,” Analytical modeling of
current collapse in AlGaN/GaN HFETs according to the virtual
gate concept,” IEEE Transactions on Device and Materials
Reliability, vol. 10, p. 287-294, Jun. 2010.
[36] Y. Z. Yue, Y. Hao, Q. Feng, J. C. Zhang, X. H. Ma, and J. Y. Ni,
“GaN MOS-HEMT using ultrathin Al2O3 dielectric grown by
atomic layer deposition,” Chin. Phys. Lett., vol. 24, no. 8, p.
2419–2422, Aug. 2007.
[37] Y. Hao, Y. Z. Yue, Q. Feng, J. C. Zhang, X. H. Ma, and J. Y. Ni,
“GaN MOS-HEMT using ultrathin Al2O3 dielectric with fmax of
30.8 GHz,” Chin. J. Semicond., vol. 28, no. 11, pp.1674–1678,
Nov. 2007. Phys. Lett., vol. 88, no. 9, p. 173 504, Apr. 2006.
[38] S. Ruvimov.,” Microstructure of Ti/Al ohmic contacts for
n-AlGaN,” Appl. Phys. Lett., vol. 73, p. 2582-2584, Nov. 1998
[39] M. W. Fay.,” Structural ad electrical characterization of
AuPdAlTi ohmic contacts to AlGaN/GaN with varying Ti content,”
Appl. Phys. Lett., vol. 96, p. 5588-5595, Nov. 2004

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top