跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昀庭
研究生(外文):Lee,Yun-Ting
論文名稱:基於OpenStack之雲端無線電接取網路資源管理機制
論文名稱(外文):Resource Management Scheme for OpenStack Based Cloud Radio Access Network
指導教授:趙禧綠趙禧綠引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:網路工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:55
中文關鍵詞:雲端資源管理感知無限電
外文關鍵詞:openstackcloudresource managementCR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於無線通訊產品推陳出新,手持裝置的數量將會持續上升,因此未來的無線系統將會需要更多資源。為了因應未來的趨勢,我們利用感知無線電網路 (Cognitive Radio Network) 及雲端來分配及管理巨大的資源。
在我們的論文中,我們探討了一個運作在雲端的無線接取網路(cloud-based cognitive radio access network,C2-RAN)。為了提升頻譜資源利用與提供綠能通訊,我們提出了一個基於雲、端、網的系統架構,並且在上面分別設計不同的資源管理架構。我們的資源管理架構主要分成三個部分,包括在雲端上的頻譜資源管理、在雲端上的功率控制及資源分配、以及在感知無線電接取點上的資源管理及使用者排程。在此篇論文中,我們著重於探討雲端上的資源分配,考量到C2-RAN的通訊網路服務會隨著時間的不同而使所需服務的對象有著劇烈的變化,傳統預先配置運算資源的雲端架構變的不可行,而為了解決這個問題,我們利用了雲端運算的彈性,提出一套可具動態調整雲端運算資源與平衡負載的管理方法。我們將依據使用者、AP的數目與服務範圍所產生的運算量或是虛擬機的負載,於雲端系統新增一能動態增加或減少使用計算資源的功能,並且能根據不同條件設立不同種的雲端擴展機制,藉此來提供雲端伺服器之間的負載平衡管理,以達到具節能功效的雲端系統。

In recent years, wireless communication product innovate to go beyond old ideas, and the number of mobile devices will rise daily. Thus, the future of wireless system will demand more resources. In order to respond accordingly to the trend of the future, we use Cognitive Radio Network and Cloud system to allocate and manage a lot of resources.
In our paper, we discuss cloud-based cognitive radio access network (C2-RAN). In order to improve spectrum utilization and provide green communication, we present an architecture based on cloud, end-device and network, and design different resource management framework for each case. Our resource management framework is separated to three parts, clustering and resource management in Cloud, power control and channel allocation in Cloud, and resource management and user scheduling in CR access points (CR APs). In this paper, we focus on discussing the cloud resource management . Taking into consideration the radical change of the users which is led by the communication of C2-RAN vary with time, the traditional pre-configured cloud computing resources architecture becomes feasible. In order to solve this problem, we took advantage of the flexibility of cloud computing, proposed a management approach which can dynamically adjust with cloud computing resources and balance the load. We will exploit a cloud which dynamically add computing resources to the system and decrease the unnecessary virtual machine and can set up different types according to the different conditions of the cloud scaling mechanism based on the loading or the amount of the virtual machine, AP number and range of service. We provide load balancing between cloud resource management, in order to achieve a saving efficacy of cloud systems.

摘要……………………………………………………………………………………….I
Abstract ………………………………………………………………………………………..II
誌謝…………………………………………………………………………………...III
目錄……………………………………………………………………………………IV
表目錄………………………………………………………………………………….VI
圖目錄………………………………………………………………………………..VII
第一章 簡介………...……….………………………………………………….1
1.1 研究背景與動機………………………………………………………….……1
1.2 相關研究…………………………………………………….……….3

第二章 系統架構……..………………………………………………………………..5
2.1 C2-RAN架構………………………………………………………………5
2.2 雲端平台架構………………………………………………………6
2.3 C2-RAN與雲端的整合………………………………………………….........7
第三章 現有機制及資源管理對應方法……………………………………………13
3.1 負載均衡機制…………………………………………………….…………13
3.2 自動擴展機制…………………………………………………….…………15
3.3 服務分類……………………………………………………………………19
3.4 所遭遇挑戰………………………………………………………….21
第四章 演算法設計…………………………………………………………..………24
4.1 問題描述……………………………………………..…..…..……………..24
4.2 類別(一)………………………………………………..…..…..……………..25
4.3 類別(二)……………………………………………..……………....…..….29
4.4 類別(三)……………………………………………………………………..31
第五章 實驗環境與結果…………………………………………………….……34
5.1 類別一實驗………………………………………………..……………..34
5.1.1 實驗說明及環境設定………………………………….……………………..34
5.1.2 類別一實驗過程與結果……………………………………………………..36
5.2 類別二實驗………………………………………………..……………..42
5.2.1 實驗說明及環境設定………………………………….……………………..42
5.2.2 類別二實驗過程與結果……………………………………………………..42
5.3 類別三實驗………………………………………………..……………..48
5.3.1 實驗說明及環境設定………………………………….……………………..48
5.3.2 類別三實驗過程與結果……………………………………………………..49

第六章 結論…………………………………………………………………………...53
參考文獻…………………………………………………………………………………….54

[1] Visual Networking Index, Global mobile data traffic forecast update, 2013-2018, Cisco Systems, available at http://www.cisco.com.
[2] Traffic and market report: On the pulse of the networked society, Ericsson, June 2012, http://www.ericsson.com/traffic-market-report.
[3] K. Chen and R. Duan, C-RAN: The Road Towards Green RAN, White Paper Version 2.5, China Mobile Research Institute, Oct. 2011, available at http://labs.chinamobile.com/cran/.
[4] NTU wireless network statistics, Computer and Information Networking Center, National Taiwan University, http://ccnet.ntu.edu.tw/wireless2/flow_rate.html.
[5] Daniel Warneke , and Odej Kao “Exploiting Dynamic Resource Allocation for Effiecent Parallel Data Processing in the Cloud”
Parallel and Distributed Systems, IEEE Transactions on Volume: 22 , Issue: 6
Publication Year: 2011 , Page(s): 985 - 997
[6] Zhen Xiao , Weijia Song , and Qi Chen “Dynamic Resource Allocation Using Virtual Machine for Cloud Computing Environment” Parallel and Distributed Systems, IEEE Transactions on Volume: 24 , Issue: 6 Publication Year: 2013 , Page(s): 1107 – 1117
[7] Qi Chen,Haipeng Luo,and Zhen Xiao “Automatic Scaling of Internet Applications for Cloud Computing Services” IEEE Transactions on Computers, vol. 63, no. 5, pp. 1111-1123, May 2014
[8] FCC, “Second report and order and second memorandum opinion and order,” FCC 10-174, Sep. 2010.
[9] S.-H. Wu, H.-L. Chao, C.-H. Ko, S.-R. Mo, C.-T. Jiang, T.-L. Li, C.-C. Cheng, and C.-F. Liang, “A Cloud Model and Concept Prototype for Cognitive Radio Networks in Spectrum White Spaces,” IEEE Wireless Communications Magazine, vol. 19, issue 4, pp. 49-58, August 2012.

[10] Sau-Hsuan Wu, Hsi-Lu Chao, Chun-Hsien Ko, Shang-Ru Mo, Chiau-Feng Liang, and Chung-Chieh Cheng, “Green Spectrum Sharing in a Cloud-Based Cognitive Radio Access Network,” IEEE GreenCom 2013.
[11] OpenStack system Architecture,[Online] Available at:
http://www.openstack.org/software/

[12] Openstack Network Architecture,[Online]Available at:
https://openstack.redhat.com/Networking_in_too_much_detail
[13] OpenStack Load balance as a service architecture,[Online]Available at:
http://www.slideshare.net/openstackil/samuel-bercovici-lbaas-for-havana
[14] AutoScaling scheme in OpenStack,[Online]Available at:
https://wiki.openstack.org/wiki/Heat/AutoScaling
[15] Ceilometer function block,[Online]Available at:
https://www.mirantis.com/blog/openstack-metering-using-ceilometer/
[16] Ceilometer Workflow [Online PDF]Available at:
https://julien.danjou.info/media/Ceilometer%20presentation%20ODS%20Havana.pdf
[17] Heat template,[Online]Available at:
http://docs.openstack.org/developer/heat/template_guide/openstack.html

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top