跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫于力
研究生(外文):Yu-li Sun
論文名稱:同化虛擬位渦反演渦旋以及位渦收支診斷分析:梅姬颱風
指導教授:黃清勇黃清勇引用關係
指導教授(外文):Ching-yuang Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣物理研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:95
中文關鍵詞:位渦反演位渦收支
外文關鍵詞:PV inversionPV budget
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
位渦包含了動力及熱力特性,且在絕熱無摩擦條件下具有保守特性,故此用來分析熱帶氣旋的變化是個良好的物理量,本篇主旨在於分析梅姬颱風,探討其受到地形影響前後位渦收支變化和分布,以及颱風轉彎前後之動力熱力特性,以了解颱風在這此期間的動力及熱力過程的演變。在進行模擬時,初始場的颱風氣壓強度通常都比實際的氣壓強度來的弱,而颱風生成在廣大的洋面上,缺乏一般的傳統觀測資料,然而為了可以增強颱風強度更接近真實場,會在初始場中加入一個對稱虛擬位渦渦旋(Potential Vorticity Bogus Vortex)來改善颱風的強度以及結構,使颱風在模擬中可以更加貼近真實的颱風狀態,並更有利於位渦診斷分析。
本研究分成二大部分,第一部分使用虛擬位渦反演,反演出風場、壓力場及溫度場,並使用三維變分同化(3DVAR)將虛擬渦旋植入初始場中,調整位渦擾動振幅、選取切割半徑及位渦擾動遞減率進行模擬,得到對強烈颱風之最佳設定。敏感度實驗結果顯示,較高的位渦擾動振幅,會同時增加初始場之動力場及熱力場,然而加強了颱風強度和結構,使其受到綜觀駛流場影響減弱,造成模擬路徑提早北偏。選取切割半徑及位渦擾動遞減率的敏感度實驗顯示,較大的選取切割半徑及位渦擾動遞減率為4時,在預報路徑有較佳的表現,而模擬強度影響不顯著。另外也進行了同化溫度場之測試,結果顯示,同化溫度場後雖然對颱風中心最低氣壓影響不大,但會使颱風整體路徑向東北方偏移,因此,對於強烈颱風梅姬,較弱之位渦擾動振幅、較小之選取切割半徑、位渦擾動遞減率4及不同化溫度場為最佳的設定。
第二部分是位渦收支診斷分析,使用同化虛擬渦旋後之初始場,再利用WRF模擬96小時之輸出,對颱風登陸前後及轉彎前後時期進行位渦收支分析。一般而言,颱風整個生命週期,平流作用是使位渦在三維空間中重新分配,在低層透過切向風,將眼牆中較高的位渦順時針平流至下游,並透過徑向內流,將眼牆外較低的位渦向內輸送,再藉由垂直運動將低層高位渦往上層輸送,因此平流作用扮演了降低眼牆垂直及水平位渦梯度的角色。由於平流作用並不會生成或減少氣旋整體位渦,非絕熱作用才是颱風增強或減弱的關鍵。颱風中的強對流會使水氣凝結,潛熱釋放,提供大量的能量去抵銷平流作用及紊流混合作用在低層的負貢獻,並持續的給予颱風能量供應,而摩擦作用只有在遇到地形時效果才會顯著。當遇到地形時,氣流抬升,潛熱作用增加,進而使徑向內流增加,平流作用也得到提升,受到地形影響,使颱風結構破壞,風速、位渦減弱,當離開地形後,颱風會由原本破碎的眼牆結構逐漸趨於對稱完整,眼牆重建期位渦趨勢也有明顯的極值分布,且在颱風未遭遇地形時,前進方向前側都有較高的非絕熱作用趨勢,這是由於颱風傾向往適合氣旋發展的環境移動,也就是往高位渦的環境前進。經由位渦收支診斷分析,可以更加瞭解颱風在各個時期的動力、熱力作用扮演的角色以及物理過程,相較於渦度收支,其包含了水相作用的過程,而颱風本身的能量來源主要是由非絕熱作用所貢獻,因此使用位渦來分析颱風的動力及熱力過程更加完善。

Potencial vorticity contains the dynamic and thermodynamic properties, and has the characteristic of conservation under adiabatic and frictionless conditions, so that it can be used to analyze changes of tropical cyclones. Herein, the purpose is to analyze the potential vorticity change and its distribution of typhoon Megi when it is influenced by topography, as well as discuss its dynamic and thermodynamic characteristics of typhoon before and after it turns northward, to understand the evolution of its dynamic and thermodynamic processes during the entire period. However, the initial intensity of the typhoon is generally weaker than the actual intensity, and typhoon often develops in the vast ocean, where there are few traditional observations. In order to enhance typhoon intensity closer to the observed, we add a symmetric virtual vortex vorticity (Potential Vorticity Bogus Vortex) to the initial field to improve typhoon intensity and structure, and make the typhoon simulation closer to the true, and more conducive to the diagnosis of PV budget.
The study is divided into two parts. The first part we use virtual PV inversion to derive wind, pressure and temperature fields, and then use a three-dimensional variational data assimilation (3DVAR) to implant a virtual PV vortex into initial field and adjust the vorticity perturbation amplitude, and select the cutting radius and potential vorticity perturbation decay rate to obtain the best setting for strong typhoons. Sensitivity experiments show that the higher the potential vorticity perturbation amplitude will also be stronger the typhoon in the initial field, but it will make the typhoon track deflect early. Experiments also show that when potential vorticity disturbance decay rate is 4 and the selection cutting radius is larger, the simulated typhoon tracks have better performance. We also conduct a test that assimilates temperature field as well. The results show that although this additional assimilation has little effect on the lowest center pressure, it will make the overall track of typhoon shift towards the northeast after the assimilation of temperature. Therefore, for the strong typhoon Megi, the weaker potential vorticity perturbation amplitude, the smaller selection cutting radius and potential vorticity perturbation decay rate 4 are the best settings.
The second part is the potential vorticity budget analysis, for which the assimilated initial field is used for 96-h forecast of WRF. In general, in the typhoon entire life cycle, advection term is to redistribute PV in three-dimensional space. In the low level, through the tangential wind and the radial inflow, it advects the higher potential vorticity clockwise downstream and reduces low level potential vorticity. And then through the vertical advection, it transfers PV from the low level to the higher level. Advection effect does not generate or reduce the whole potential vorticity, so diabatic effect is the key to increase or decrease the typhoon intensity. Convection induced by typhoon causes condensation and latent heat release, which provides sufficient energy to maintain typhoon continuously. Frictional effect will be significant only when typhoon is influenced by topography. When the typhoon does not hit the terrain, the front side of the advancing direction of the typhoon has a higher tendency of diabatic effect, which is due to the fact that typhoon is prone to move toward the environment suitable for the development of cyclone. Through the analysis of potential vorticity budget, we can better understand the dynamic and thermodynamic effects and physical processes in various periods.

中文摘要 I
英文摘要 III
誌謝 V
圖表目錄 VIII
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 前人研究 1
1-3研究動機及目的 5
第二章 個案與研究方法 7
2-1 個案介紹 7
2-2 位渦反演方程式 8
2-3 位渦收支方程 9
第三章 模式介紹與研究設定 13
3-1 模式介紹 13
3-2 模式設計 14
3-3 實驗設計 14
第四章 虛擬位渦反演與同化 16
4-1 虛擬位渦擾動設定 16
4-2 虛擬位渦反演結果 16
4-3 同化虛擬位渦反演渦旋 18
第五章 梅姬颱風模擬實驗 20
5-1 同化虛擬位渦反演渦旋 20
5-2 位渦擾動振幅敏感度實驗 21
5-3 選取切割半徑、位渦擾動遞減率、同化溫度敏感度實驗 22
第六章 梅姬颱風位渦收支診斷分析 24
6-1 位渦收支診斷 24
6-2 登陸前位渦收支分析 25
6-3 登陸後(轉彎前)位渦收支分析 27
6-4 轉彎後位渦收支分析 29
第七章 總結與未來展望 30
參考文獻 34
附錄一 方程式的線性化 39
附錄二 滿足橢圓條件 41
附錄三 邊界條件 43
附錄四 準平衡ω方程式 44
表格 46
附圖 52

陳盈文,2013:使用WRF 3DVAR及4DVAR 同化虛擬位渦渦旋對颱風數值模擬之影響。國立中央大學大氣物理研究所碩士論文,1-115。
林妗庭,2012:WRF 4DVAR 虛擬渦旋及雷達資料同化對於颱風凡那比(2010)數值模擬之影響。國立中央大學大氣物理研究所碩士論文,1-80。
黃子茂,2012:同化虛擬位渦反演渦旋對凡那比颱風初始場模擬及路徑遇到之影響。國立中央大學大氣物理研究所碩士論文,1-59。
林柏旭,2011:納莉颱風(2001)之位渦收支分析。國立中央大學大氣物理研究所碩士論文,1-51。
洪于珺,2010:颱風辛樂克(2008) WRF 模擬及位渦反演之研究。國立中央大學大氣物理研究所碩士論文,1-83。
劉豫臻,2009:聖帕颱風模擬的位渦反演之診斷分析。國立中央大學大氣物理研究所碩士論文,1-85。
Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.
Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929-1953.
Davis, C. A., E. D. Grell, and M. A. Shapiro, 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 3-26.
Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 19-60.
Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and
Doppler radar data. Mon. Wea. Rev., 121, 2433–2451.
Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 27, 11-37.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.
Huang, X.-Y., Q. Xiao, W. Huang, D. M Barker, J.Michalakes, J. Bray, Z. Ma, Y.-R., Guo, H.-c.Lin, and Y.H.Kuo,2006.Preliminary results of WRF 4D-Var. WRF user’s workshop, Boulder, Colorado, 19-22 June 2006.
Huang, X.-Y., Q. Xiao, D.M. Berker, X. Zhang, J. Michalakes, W. Huang, T. Henderson, J.Bray, Y. Chen, Z. Ma, J. Dudhia, Y. Guo, X. Zhang, D.J. Won, H.C. Lin, and Y .H. Kuo,2009: Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results. Mon. Wea. Rev., 137, 299-314.
Huo, Z.-H., D.-L. Zhang, and J. R. Gyakum, 1998: An Application of Potential Vorticity Inversion to Improving the Numerical Prediction of the March 1993 Superstorm. Mon. Wea. Rev., 126, 424-436.
Haynes, P. H., and M. E. McIntyre, 1987: On the Evolution of Vorticity and Potential Vorticity in the Presence of Diabatic Heating and Frictional or Other Forces. J.Atmos.Sci., 44, 828–841.
Kieu, C. Q. 2005: Piecewise Potential Vorticity Inversion. Master thesis, pp. 81, Department of Atmospheric and Oceanic Science, University of Maryland, USA.
Kieu, Chanh Q., Da-Lin Zhang, 2010: A Piecewise Potential Vorticity Inversion Algorithm and Its Application to Hurricane Inner-Core Anomalies. J. Atmos. Sci., 67, 2616–2631.
Komaromi, W., S. Majumdar, and E. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008)., Mon. Wea. Rev., 139, 3224–3242.
Kurihara, Y., N. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030-2045.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.
Liu, Y. D., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127,
2597–2616.
Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919–942.
Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the Eye and Eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259.
Möller, J. D., and S. C. Jones, 1998: Potential vorticity inversion for tropical cyclones using the asymmetric balance theory. J. Atmos. Sci., 55, 259–282.
Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130,
1866–1881.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.
Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci., 54, 479–497.
Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.
Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, and H.-C. Kuo, 2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148–3157.
Shapiro, L. J., and J. L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea.Rev., 123, 1465–1475.
Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 3322–3335.
Shapiro, L. J., 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124, 2497–2508.
Wang, X., and D.-L. Zhang, 2003: Potential vorticity diagnosis of a simulation hurricane. Part I: formulation and quasi-balanced flow. J. Atmos. Sci., 60, 1593–1607.
Wang Y., 2002a: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I:Overall Structure, Potential Vorticity, and Kinetic Energy Budgets. J. Atmos. Sci., 59, 1213-1238.
Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265-274.
Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123,69–92.
Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93–109.
Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264-2282.
Wu, C.-C., 2001: Numerical Simulation of Typhoon Gladys (1994) and Its Interaction with Taiwan Terrain Using the GFDL Hurricane Model. Mon. Wea. Rev., 129, 1533-1549.
Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 21–40.
Wu, L., and B. Wang, 2000: A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion. Mon. Wea. Rev., 128, 1899–1911.
Wu, L., and B. Wang, 2001: Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study*. J. Atmos. Sci., 58, 3639–3649.
Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea .Rev., 128, 2252-2269.
Yau, M. K., Y. Liu, and D-L. Zhang, 1999: Numerical simulation of the inner-core structures of Hurricane Andrew (1992). Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 668–671.
Zhang, D.-L., and C. Q. Kieu, 2006: Potential vorticity diagnosis of a simulation hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 2898-2914.
Zhang, D.-L., Y. Liu, and M.-K. Yau, 2000: A multiscale numerical study of hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128,
3772-3788.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92-107.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–27.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊