跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江知優
研究生(外文):Chih-yu Chiang
論文名稱:含氟或三氟甲基的輔助配位子之環金屬釕錯合物的合成及其在染料敏化太陽能電池上的應用
論文名稱(外文):Synthesis of Cyclometalated Ru(II) Sensitizers with Fluoro- or Trifluoromethyl- Substituent on the Ancillary Ligands for Dye-Sensitized Solar Cells
指導教授:吳春桂吳春桂引用關係
指導教授(外文):Chun-guey Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:121
中文關鍵詞:染料敏化太陽能電池環金屬釕敏化劑
外文關鍵詞:Dye-sensitized solar cellsCyclometalated Ruthenium(II) Sensitizers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於全球暖化危機,尋找好的再生能源是目前非常重要的議題,而取之不盡、用之不竭,乾淨且少污染的太陽能是目前最被看好的再生能源。染料敏化太陽能電池 (DSSCs)能將太陽能轉換成電能,是被廣泛研究的新型式太陽能電池之一。此類型電池光電流的來源-染料,是影響電池光電轉換效率與元件長時間穩定性的重要關鍵。許多以釕金屬為中心的錯合物染料具有高效率,如N749,是以一個三牙基terpyridine-carboxylic acid及三個單牙輔助配位基Thiocyanate ligand (NCS)所組成的六配位錯合物,但單牙基的NCS穩定度低。本論文研究重點即設計出新結構三牙基輔助配位基Ligand T2 ~ Ligand T4,以取代三個NCS單牙基,合成出了三個應用於DSSC的釕錯合物敏化劑T2~T4,這三個錯合物染料皆以6-phenylpyridine-2-carboxylate的衍生物為三牙輔助配位子,能與釕形成環金屬 (cyclometalated) 配位,再以terpyridine-carboxylic acid為附著配位基,形成6配位釕金屬錯合物,含環金屬配位基的染料分子其HOMO與LUMO間的能階差較小,使染料有機會能吸收更長波長的光,增加元件之光電流值。另外在輔助配位基中引入了F或CF3基團,降低染料分子的HOMO能階,以利於電解質將氧化態的染料還原再生。在三者中光電性質最佳的T3染料,組裝成電池元件後的短路電流密度 (Jsc)為12.86 mA cm-2,開路電壓 (Voc) 為0.65 V,填充因子 (FF)為0.623,光電轉換效率為5.21%,在相同條件下N749的光電轉換效率為8.87%。
Looking for a renewable energy is one of the currently important issues due to the global warming issue. Solar energy is the most promising renewable energy source because it is inexhaustible, clean and less polluting. Dye-sensitized solar cells (DSSCs) which can convert solar energy into electrical energy, is one of the new generation solar cells under extensive studied. Dye molecules are the source for the photocurrent of DSSC. They also affect the power conversion efficiency and stability of the corresponding devices. In this thesis, we forcus on the synthesis of three new ruthenium dyes, T2, T3, and T4, containing a tridentated ancillary ligand (which is used to replace three NCS ligands to increase the long-term stability of the cell) with O^N^C corrdination sites. Tridentate O^N^C ligand was used to enhance the light harvesting efficiency in the longer wavelength region, because cyclometalated ruthenium complexes have small energy gap. Furthermore, the electron withdrawing groups, such as F- and CF3-, was incorporated in the ancillary ligang to lower the HOMO level of these dyes. Therefore the oxidized dyes can be efficiently regenerated by the electrolyte. The best (amongst the three dyes) photovoltaic performance T3 dye gave a short-circuit photocurrent density of 12.86 mA cm-2, open-circuit voltage of 0.65 V, and a fill factor of 0.623, affording an overall conversion efficiency of 5.21% vs 8.87% for N749 based cell fabricated at similar conditions.
目錄

摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XI
序論 1
1-1、前言 1
1-2、太陽能電池的種類 2
1-3、染料敏化太陽能電池 (Dye-sensitized solar cells, DSSCs)介紹 2
1-4、光電轉換效率(η)的量測 4
1-4-1、IPCE (Incident Photon to current Conversion Efficiency) 5
1-4-2、總光電轉換效率 ( η ) 5
1-5、良好光敏化劑的特性 6
1-6、釕金屬光敏化劑介紹 7
1-6-1、延長釕金屬錯合物之固著配位基 (Anchoring ligand)的共軛長度 7
1-6-2、輔助配位基(Ancillary ligand)的修飾 10
1-6-3、環金屬(Cyclometallated)釕錯合物染料 15
1-6-4、Thiocyanate Ligand 在釕金屬錯合物上的穩定性 23
1-6-5、不含Thiocyanate Ligand的釕金屬錯合物 24
1-7、研究動機 34

貳、實驗部分 36
2-1、實驗藥品 36
2-2、儀器分析與樣品製備 38
2-2-1、紫外光/可見光吸收光譜儀 (UV/Vis. Spectrometer) 38
2-2-2、核磁共振光譜儀 (Nuclear Magnetic Resonance) 38
2-2-3、電化學測量裝置 (Electrochemical Measurement) 39
2-2-4、交流阻抗分析﹙AC-Impedance analysis﹚ 40
2-2-5、太陽光模擬器與元件I-V效率量測系統 (Solar Simulator and I-V measuring system) 42
2-2-6、太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficieny, IPCE) 42
2-2-7、光強度調制光電流/光電壓分析儀 (Intensity Modulated Photocurrent Spectroscopy/Intensity Modulated Photovoltage Spec- troscopy , IMPS/IMVS) 43
2-2-8、瞬態吸收光譜 (Transient Absorption Spectroscopy,TAS) 44
2-3、中間產物之結構與簡稱 46
2- 4、固著配位基(Et3tctpy)的合成 50
2-5、輔助配位基的合成 52
2-5-1、Ligand T2 的合成 52
2-5-2、Ligand T3的合成 54
2-5-3、Ligand T4的合成 57
2-6、釕金屬錯合物合成 59
2-6-1、T2染料分子合成 59
2-6-2、T3染料分子合成 61
2-6-3、T4染料分子合成 63
2-7-1、二氧化鈦電極的製備與修飾 65
2-7-2、Pt對電極的製備 66
2-7-3、太陽能電池元件的組裝及效率測試 66
參、結果與討論 68
3-1、合成染料的探討 68
3-2、T2, T3及T4染料光學性質探討 68
3-3、T2、T3及T4染料之分子吸收光譜的TD-DFT理論計算: 71
3-4、T2, T3及T4染料能階結構探討 76
3-5、以T2, T3及T4染料所敏化之DSSC元件的效能探討 78
3-6、以T2, T3及T4染料所敏化之電池元件的電化學阻抗 (Electrochemical impedance spectroscopy, EIS)分析 80
3-7、T2、T3及T4所敏化之電池元件的瞬態吸收光譜 (Transient Absorption Spectroscopy, TAS)探討 82
3-8、光強度調制光電流/光電壓圖譜 (IMPS/IMVS,Intensity Modulated Photocurrent/ Photovoltage Spectroscopy)的分析 84
3-9、T2、T3及T4所敏化之電池元件的長時間穩定性 (Long Term Stability)的測試 87
肆、結論 90
伍、參考文獻 91
附錄 97

1. (a) Potočnik, J. “Renewable Energy Sources and the Realities of Setting an Energy Agenda”, Science 2007, 315, 810-811. (b) Service, R. F. “Solar Report Sets the Agenda”, Science 2005, 309, 549.
2. “Trends in Photovolatic Applications.Survey Report of Selected IEA Countries between 1992 and 2007”, IEA-PVPS 2008, T1-17.
3. Repins, I. M.; Romero, C., M.; Yan, Y.; Metzger, W.; Li, J.; Johnston, S.; Egaas, B.; DeHart, C.; Scharf, J.; McCandless, B. E.; Noufi, R. “Characterization of 19.9%-Efficient CIGS Absorbers” National Renewable Energy Laboratory 2008.
4. O'Regand, B.; Grätzel, M. “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 films”, Nature 1991, 353, 737 - 740.
5. Grätzel, M. “Photoelectrochemical Cells”, Nature 2001, 414, 338 - 344.
6.((a))https://teknologisurya.wordpress.com/dasar-teknologi-sel-surya/energi-surya/((b))https://www.folsomlabs.com/modeling/module/module_model
7. Wang, P.; Klein, C.; Moser, J. E.; Humphry-Baker, R.; Cevey-Ha, N. L.; Charvet, R.; Comte, P.; Zakeeruddin, S. M.; Grätzel, M. “Amphiphilic Ruthenium Sensitizer with 4,4’-Diphosphonic Acid-2,2’-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells”, J. Phys. Chem. B. 2004, 108, 17553-17559.
8. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. “Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. 1993, 115, 6382-6390.
9. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc.2005, 127, 16835-16847.
10. Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc.2001, 123, 1613-1624.
11. Barolo, C.; Nazeeruddin, M. K.; Fantacci, S.; Di Censo,D.; Comte, P.; Liska, P.; Viscardi, G.; Quagliotto, P.; De Angelis, F.; Ito, S.; Grätzel, M. “Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand”, Inorg. Chem. 2006, 45, 4642-4653.
12. Grätzel, M. “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg.Chem. 2005, 44, 6841.
13. Funaki, T.; Yanagida, M.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Kawanishi, Y.; Sugihara, H. “Efficient Panchromatic Sensitization of Nanocrystalline TiO2-Based Solar Cells Using 2-Pyridinecarboxylate-Substituted Ruthenium(II) Complexes”, Chem. Lett. 2009, 38, 62-63.
14. Funaki, T.; Yanagida, M.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Kawanishi, Y.; Sugihara, H. “A 2-Quinolinecarboxylate-Substituted Ruthenium(II) Complex as a New Type of Sensitizer for Dye-Sensitized Solar Cells”, Inorganica Chimica Acta. 2009, 362, 2519-2522.
15. Bomben, P. G.; Robson, K. C. D.; Sedach, P. A.; Berlinguette, C. P. “On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications”, Inorg. Chem.2009, 48, 9631-9643.
16. Bomben, P. G.; Thériault, K. D.; Berlinguette, C. P. “Strategies for Optimizing the Performance of Cyclometalated Ruthenium Sensitizers for Dye-Sensitized Solar Cells”, Eur. J. Inorg. Chem. 2011, 1806-1814.
17. Wadman, S. H.; Kroon, J. M.; Bakker, K.; Lutz, M.; Spek, A. L.; Klink, G. P.; Koten, G. “Cyclometalated Ruthenium Complexes for Sensitizing Nanocrystalline TiO2 Solar Cells”, Chem. Commun. 2007, 1907-1909.
18. Funaki, T.; Funakoshi, H.; Kitao, O.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Sayama, K.; Sugihara, H. “ Cyclometalated Ruthenium(II) Complexes as Near-IR Sensitizers for High Efficiency Dye-Sensitized Solar Cells”, Angew. Chem. Int. Ed. 2012, 51, 7528–7531.
19. Nguyen, H. T.; Ta, H. M.; Lund, T. “Thermal Thiocyanate Ligand Substitution Kinetics of the Solar Cell Dye N719 by Acetonitrile, 3-Methoxypropionitrile, and 4-tert-Butylpyridine”, Solar Energy Materials and Solar Cells. 2007, 91, 1934-1942.
20. Bessho, T.; Yoneda, E.; Yum, J.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. “New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications”, J. Am. Chem. Soc., 2009, 131 , 5930–5934.
21. Hsu, C. W.; Ho, S. T.; Wu, K. L.; Chi, Y.; Liu, S. H.; Chou, P. T. “Ru(II) Sensitizers with a Tridentate Heterocyclic Cyclometalate for Dye-Sensitized Solar Cells”, Energy Environ. Sci.2012, 5 , 7549-7554.
22. Chou, C. C.; Chen, P. H.; Chi, Y.; Ho, S. T.; Kai, J. J.; Liu, S. H.; Chou, P. T. “Structural Tuning of Ancillary Chelate in Tri-Carboxyterpyridine Ru(II) Sensitizers for Dye Sensitized Solar Cells”, J. Mater. Chem. A, 2014, 2, 5418–5426.
23. Funaki, T.; Otsuka, H.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Sayama, K.; Sugihara. H. “ New Class of NCS-free Cyclometalated Ruthenium(II) Complexes with 6-Phenylpyridine-2-carboxylate for Use as Near-Infrared Sensitizers in Dye-Sensitized Solar Cells”, Inorg. Chem. commun. 2014, 46, 137–139.
24. Longo, C.; Nogueira, A. F.; De Paoli, M.-A.; Cachet, H. “Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B. 2002, 106, 5925-5930.
25. Wang, Q.; Moser, J. E.; Grätzel, M. “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, J. Phys. Chem. B. 2005, 109, 14945-14953.
26. (a) Mozer, A. J.; Panda, D. K.; Gambhir, S.; Winther-Jensen, B.; Wallace, G. G. “ Microsecond Dye Regeneration Kinetics in Efficient Solid State Dye-Sensitized Solar Cells Using a Photoelectrochemically Deposited PEDOT Hole Conductor”, J. Am. Chem. Soc. 2010, 132, 9543-9545. (b) Anderson, A. Y.; Barnes, P. R. F.; Durrant, J. R.; O’Regan, B. C. “Quantifying Regeneration in Dye-Sensitized Solar Cells”, J. Phys. Chem. C. 2011, 115, 2439-2447.
27. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gorelsky, S. I.; Lever, A. B. P.; Grätzel, M. “Synthesis, Spectroscopic and a ZINDO Study of cis- and trans-(X2)Bis(4,4’-dicarboxylic acid-2,2’-bipyridine)Ruthenium(II) Complexes (X= Cl-, H2O, NCS-)”, Coordination Chemistry Reviews. 2000, 208, 213-225.
28. Zabri, H.; Gillaizeau, I.; Bignozzi, C. A.; Caramori, S.; Charlot, M.-F.; Cano-Boquera, J.; Odobel, F. “Synthesis and Comprehensive Characterizations of New cis-RuL2X2 (X= Cl, CN, and NCS) Sensitizers for Nanocrystalline TiO2 Solar Cell Using Bis-Phosphonated Bipyridine Ligands (L)”, Inorg. Chem. 2003, 42, 6655-6666.
29. (a) Kopidakis, N.; Schiff, E. A.; Park, N. G.; van de Lagemaat, J.; Frank, A. J. “Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2”, J. Phys. Chem. B. 2000, 104, 3930-3936. (b) Lanning, O. J.; Madden, P. A. “Screening at a Charged Surface by a Molten Salt”, J. Phys. Chem. B. 2004, 108, 11069-11072.
30. (a) Park, N. G.; Schlichthörl, G.; van de Lagemaat, J.; Cheong, H. M.; Mascarenhas, A.; Frank, A. J. “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4”, J. Phys. Chem. B. 1999, 103, 3308-3314. (b) Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M. “Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy”, J. Phys. Chem. B. 2003, 107, 7536-7539.
31. 李佳. “具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池”, 國立中央大學2014年碩士論文.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top