跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃依雯
研究生(外文):I-Wen Huang
論文名稱(外文):Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
指導教授:阮啟弘阮啟弘引用關係
指導教授(外文):Chi-Hung Juan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:認知與神經科學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:53
中文關鍵詞:認知控制衝突處理跨顱電刺激
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
衝突是在複雜的環境當中常出現的狀況之一,當我們在進行一項主要作業時,往往會有干擾物的出現,影響到我們對於主要作業的處理。當干擾物出現時,會使得人們的反應速度變慢,而且錯誤率往往也會提高,當需要成功解決衝突時,所需要的認知控制能力也較高。研究衝突處理的歷程一直以來都是心理學家與認知神經科學家所探討的議題。本研究使用跨顱電刺激試圖去釐清兩個有關衝突處理的腦區及其歷程:(實驗一)衝突適應與背側前額葉腦區;(實驗二)顳頂葉交界腦區與自主性以及刺激驅動注意力的交互作用。
衝突適應是指在個體連續遇到兩個衝突情況時,可以在第二個衝突情況表現的比第一個情況來得好,可以從較快的反應時間以及較低的錯誤率中觀察到。普遍認為衝突適應是由於經歷到第一個衝突情況時,背側前額葉腦區會去提升認知控制的程度,因此能在第二個衝突出現時,更專心在目標物上避免被干擾物所影響。而衝突適應與背側前額葉腦區的關係,一直以來都沒有因果性證據,因此我們施打跨顱電刺激在背側前額葉腦區並結合顏色側向抑制作業(Color flanker task),來觀察受試者在衝突適應的表現。實驗結果發現正極電刺激調節了衝突適應的能力,相比於行為實驗結果,正極電刺激使受試者衝突適應的能力變差,確立了背側前額葉腦區與衝突適應間的因果關係。
顳頂葉交界腦區一直以來都被認為與刺激驅動注意力有關,但最近的實驗中發現,顳頂葉交界腦區不只在進行刺激驅動注意力會有高活化的現象,當人們在使用自主性注意力,像是衝突處理的情況時,顳頂葉交界腦區會有低活化的現象,而這樣的低活化的層度會與目標作業本身的難度有交互作用,因此我們在實驗二當中施打跨顱電刺激在顳頂葉交界腦區結合多數功能作業(Majority function task)希望找出因果性的證據。實驗結果發現負極電刺激破壞了顳頂葉交界腦區與自主性以及刺激驅動注意力的交互作用,進一步確立了因果關係。
本研究雖使用跨顱電刺激來補足功能性磁振造影以及腦波儀所無法確立的因果性證據,但也因為只能以實驗結果來推論電刺激後的反應變化而有所不足,未來希望能結合跨顱電刺激與腦照影工具在研究衝突處理歷程能有更完整的拼圖。

Cognitive control is crucial for adaptation in a complex and dynamic environment, which involves allocating limited cognitive resources in our brain for better task performances in our daily life. Higher cognitive control is required when processing a conflict situation. For example, when competing behavioral responses are in conflict or when automatic processing needs to be overridden, higher cognitive control allows us to avoid the irrelevant distractions and to resolve conflicts. Although conflict processing has been studied for a long time, two issues relating to conflict resolution and its neural mechanisms still need to be further investigated. The major purpose of this study is to investigate the neural mechanisms of two extended research questions by combining transcranial Direct-Current Stimulation (tDCS) which provides the causal relationship between the specific brain region and behavioral performance: (1) Top-down adjustment in conflict resolution (conflict adaptation) and the dorsal lateral prefrontal cortex (DLPFC); (2) Integration of top-down and bottom-up control in conflict resolution and the temporoparietal junction (TPJ). In the experiment 1, anodal rDLPFC tDCS modulated the conflict adaptation effect, which provided the causal role of rDLPFC in this function. In the experiment 2, cathodal rTPJ tDCS influenced the integration of top-down and bottom-up control, which demonstrated that rTPJ is not limited in bottom-up process and could be a detector of the irrelevant distractor in top-down process. The results compensate the limitation of the brain imaging tools such as fMRI or EEG/ERP to provide the causal evidences by non-invasive brain stimulation.
Chapter 1- Introduction.……………………………………………………………….1
1.1 Cognitive control and conflict resolution…………………………………….1
1.2 Top-down adjustment in conflict resolution (conflict adaptation).…………..3
1.2.1 Behavioral studies.………………………………………………….4
1.2.2 Neural mechanisms (Dorsal lateral prefrontal cortex).......................7
1.3 Interaction of top-down and bottom-up control in conflict resolution (Temporoparietal junction)............................................................................15
1.4 Transcranial Direct-Current Stimulation (tDCS)...........................................19
1.5 Purpose of this thesis......................................................................................21
Chapter 2 - Experiment 1.............................................................................................22
2.1 Method...........................................................................................................22
2.2 Results............................................................................................................26
2.3 Discussion......................................................................................................33
Chapter 3 - Experiment 2.......………………………………………………………..35
3.1 Method.......………………………………………………………................35
3.2 Results.......……………………………………………………….................39
3.3 Discussion.......………………………………………………………...........41
Chapter 4 - General discussion...…………………………………………………….42
4.1 Experimental findings.......………………………………………………….42
4.2 Conclusion.......................................…………………………………….......46
4.3 Limitation and future direction.......…………………………………….......47
References……………………………………………………………………………49

Anticevic, A., Repovs, G., Shulman, G. L., & Barch, D. M. (2010). When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage, 49(3), 2638–48. doi:10.1016/j.neuroimage.2009.11.008
Boggio, P. S., Rigonatti, S. P., Ribeiro, R. B., Myczkowski, M. L., Nitsche, M. a, Pascual-Leone, A., & Fregni, F. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 11(2), 249–54. doi:10.1017/S1461145707007833
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11488380
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–46. doi:10.1016/j.tics.2004.10.003
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–81. doi:10.1038/46035
Chang, C.-F., Hsu, T.-Y., Tseng, P., Liang, W.-K., Tzeng, O. J. L., Hung, D. L., & Juan, C.-H. (2013). Right temporoparietal junction and attentional reorienting. Human Brain Mapping, 34(4), 869–77. doi:10.1002/hbm.21476
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306–24. doi:10.1016/j.neuron.2008.04.017
Diquattro, N. E., Sawaki, R., & Geng, J. J. (2013). Effective Connectivity During Feature-Based Attentional Capture: Evidence Against the Attentional Reorienting Hypothesis of TPJ. Cerebral Cortex (New York, N.Y. : 1991). doi:10.1093/cercor/bht172
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–90. doi:10.1038/nn1594
Eriksen, B., & Eriksen, C. (1974). effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics. Retrieved from http://link.springer.com/article/10.3758/BF03203267
Eriksen, C. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/13506289508401726
Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and Brain Consequences of Conflict. NeuroImage, 18(1), 42–57. doi:10.1006/nimg.2002.1319
Fan, J., Guise, K. G., Liu, X., & Wang, H. (2008). Searching for the majority: algorithms of voluntary control. PloS One, 3(10), e3522. doi:10.1371/journal.pone.0003522
Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology. General, 121(4), 480–506. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1431740
Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1–17. doi:10.1007/s00426-003-0132-y
Hsu, T.-Y., Tseng, L.-Y., Yu, J.-X., Kuo, W.-J., Hung, D. L., Tzeng, O. J. L., … Juan, C.-H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56(4), 2249–57. doi:10.1016/j.neuroimage.2011.03.059
Hsu, T.-Y., Tseng, P., Liang, W.-K., Cheng, S.-K., & Juan, C.-H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage. doi:10.1016/j.neuroimage.2014.04.069
Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W.-H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain : A Journal of Neurology, 128(Pt 3), 490–9. doi:10.1093/brain/awh369
Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experimental Brain Research, 216(1), 1–10. doi:10.1007/s00221-011-2891-9
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science (New York, N.Y.), 303(5660), 1023–6. doi:10.1126/science.1089910
Liang, W., Lo, M., Yang, A., & Peng, C. (2014). Revealing the brain’s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by mutiscale entropy. NeuroImage. Retrieved from http://www.sciencedirect.com/science/article/pii/S1053811913012688
MacDonald, a. W., Cohen, J. D., Stenger, V. A, Carter, C., & S. (2000). Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288(5472), 1835–1838. doi:10.1126/science.288.5472.1835
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109(2), 163–203. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2034749
Mansouri, F. a, Buckley, M. J., & Tanaka, K. (2007). Mnemonic function of the dorsolateral prefrontal cortex in conflict-induced behavioral adjustment. Science (New York, N.Y.), 318(5852), 987–90. doi:10.1126/science.1146384
Mansouri, F. a, Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nature Reviews. Neuroscience, 10(2), 141–52. doi:10.1038/nrn2538
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–2. doi:10.1038/nn1051
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11283309
Nitsche, M. a, Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–23. doi:10.1016/j.brs.2008.06.004
Notebaert, W., Gevers, W., Verbruggen, F., & Liefooghe, B. (2006). Top-down and bottom-up sequential modulations of congruency effects. Psychonomic Bulletin & Review, 13(1), 112–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16724777
Stagg, C. J., & Nitsche, M. a. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(1), 37–53. doi:10.1177/1073858410386614
Stroop, J. (1935). studies of interference in serial verbal reactions. Journal of Experimental Psychology, (1912). Retrieved from http://psycnet.apa.org/journals/xge/18/6/643/
Veen, V. Van, & Carter, C. S. (2006). Conflict and Cognitive Control in the Brain. Current Directions in Psychological Science, 15(5), 237–240. doi:10.1111/j.1467-8721.2006.00443.x
Verbruggen, F., Notebaert, W., Liefooghe, B., & Vandierendonck, A. (2006). Stimulus- and response-conflict-induced cognitive control in the flanker task. Psychonomic Bulletin Review, 13(2), 328–333. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2006-09279-022&site=ehost-live
Weiss, M., & Lavidor, M. (2012). When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. Journal of Cognitive Neuroscience, 24(9), 1826–33. doi:10.1162/jocn_a_00248
Wu, Q., Chang, C.F., Xi, S.S., Huang, I.W., Liu, Z.X., Juan, C.H., Wu, Y.H., Fan, J. (2014). A critcal role of temporoparietal junction in the integration of top-down and bottom-up attentional control. (in preparation)
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity. Psychological Review, 111(4), 931–959. doi:10.1037/0033-295X.111.4.931

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control
2. Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
3. Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation
4. 利用跨顱直流電刺激與心理物理方法探討認知控制的神經歷程
5. A Longitudinal Study of Children’s Attention and Intellectual Development During the Transition to School and their Relationships to Mathematics Achievement
6. 以非侵入式腦刺激探討左後側頂葉與情節記憶提取之因果關係
7. Investigation of the mechanisms of anxiety-related functions in the general population using brain stimulation
8. 以跨顱交流電刺激探討左側頂葉與顳葉腦區在視覺工作記憶扮演之角色
9. Shaping the world through culture: an investigation of the effects of culture on cognition and perception
10. 以事件相關腦電位探討特質焦慮對主動式注意力攫取的影響
11. Diversity and Commonality of Cognitive Profile among Static, Strategic and Interceptive Sports-Expertise
12. 以跨顱交流電刺激探究後頂葉腦區間相位的不同於視覺短期記憶中所扮演的角色
13. 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
14. 即時回饋類型對於雙手協調動作學習之影響
15. The electrophysiological correlates of working memory-load effects in operation span task and symmetry span task