跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳德銘
研究生(外文):De-ming Chen
論文名稱:以軟硬體協同設計之 HE-AAC 音訊解碼器
論文名稱(外文):A Hardware/Software Co-Design of High Efficiency AAC Audio Decoder
指導教授:蔡宗漢蔡宗漢引用關係
指導教授(外文):Tsung-Han Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:45
中文關鍵詞:音訊解碼積體電路設計AAC 解碼器
外文關鍵詞:AACVLSIaudio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文主要是在呈獻出以軟硬體協同設計的方式時實現high efficiency advanced-audio-coding (HE-AAC) 的音訊解碼器, 基於我們複雜度的分析我們可以把這個音訊系統切個成兩個部分. 我們的軟體實現的部分為bitstream parser 和 低運算複雜度的部分, 其他高運算複雜度的地方以硬體實現,我們設計硬體的部分是以VLSI 的IP 方式呈現,在我們決定要以硬體方式實作出來的四個模組。其中IMDCT, analysis quadrature mirror filterbank (AQMF), synthesis quadrature mirror filterbank (SQMF). 這三個模組是以拆解成radix-2 FFT的方式去實現。在我們的設計之中,我們的IP有包上BUS的Wrapper和一些系統層級的實現方式. 我們以TSMC090 的製程去實現我們的設計. 我們的設計約為150K的gate count. 另外我們的IP以1.75MHz極低的運行時脈實現. 所以我們的功率消耗可以低至 7.69mw. 之後我們更進一部的將我們的IP 移植到ARM base 的開發板上可以達到即時的音樂播放. 當在ARM 系統的平台上,使用我們的IP 時可以保留ARM processor 約91.26% 的運算負載。
This paper presents an implementation of hardware/software co-design for high efficiency advanced-audio-coding (HE-AAC) audio decoder. Based on our computation analysis, the decoder system is partitioned into software part and hardware part respectively. We allocate the lower complexity part and bitstream parser with the software solution, and the higher complexity part with the hardware solution. We design the hardware part as an intellectual property (IP) in VLSI design domain. As in this dedicated hardware, four units are developed to cope with the IMDCT, analysis quadrature mirror filterbank (AQMF), synthesis quadrature mirror filterbank (SQMF). For these versatile transformation functi ons, the common radix-2 FFT is decomposed to manipulate it. In an overall system, IP-based implementation is constructed including the wrapper design and some system-level implementation. This design is using TSMC 90 nm library with about 150K gates. Alternatively it can execute at a very low operation frequency with 1.75 MHz. Besides, the power consumption is only 7.69 mW. We further port our design on an ARM Integrator platform to make a real playable system. Over 91.26% ARM performance loading can be saved and substituted by this HE-AAC intelligent property (IP).
摘要 i
Abstract i
Table of Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Analysis and Design Strategy…………………………………………4
2.1 Analysis 4
2.2 Design Strategy 7
2.2.1. Fast Algorithms 8
2.2.2. Formula Simplification 14
2.2.3. Improve Memory Access Order 15
2.2.4. Low Power Consumption Design 16
Chapter 3 Hardware struction we purposed 18
3.1 Stage1 19
3.2 Stage2 20
3.3 Stage3 22
3.4 Stage4 26
Chapter 4 Architecture of proposed design 28
4.1 Communction Between our ASIC and Processor 29
4.2 Pipeline Timing Char 31
Chapter 5 Experimental Result 32
5.1 Cell base 32
5.1.1. Resources use by Cell Base 32
5.1.2. Power Consumption Optimization 34
5.1.3. Power Consumption Comparison (ASIC with ARM processor) 36
5.2 SOPC platform 38
5.2.1. Platform Equipment 38
5.2.2. SOPC Structure of Proposed Design 39
Chapter 6 Conclusion 41
References 43

[1] Stefan Meltzer and Gerald Moser, "MPEG-4 HE-AAC v2 – audio coding for today's digital media world". EBU technical review (01/2006), January. 2006.
[2] Junqiao Huang; Gaoming Du; Duoli Zhang; Yukun Song; Luofeng Geng; Minglun Gao, "VLSI design of resource shared complex-QMF bank for HE-AAC decoder," ASIC, 2009. ASICON '09. IEEE 8th International Conference on , vol., no., pp.796,799, 20-23 Oct. 2009
[3] Shih-Way Huang; Tsung-Han Tsai; Liang-Gee Chen, "Fast decomposition of filterbanks for the state-of-the-art audio coding," Signal Processing Letters, IEEE , vol.12, no.10, pp.693,696, Oct. 2005.
[4] Chivukula, R.K.; Reznik, Y.A; Devarajan, V.; Jayendra-Lakshman, M., "Fast Algorithms for Low-Delay SBR Filterbanks in MPEG-4 AAC-ELD," Audio, Speech, and Language Processing, IEEE Transactions on , vol.20, no.3, pp.1022,1031, March 2012
[5] Chivukula, R.K.; Reznik, Y.A.; Devarajan, V.; Jayendra-Lakshman, M., "Fast Algorithms for Low-Delay SBR Filterbanks in MPEG-4 AAC-ELD," Audio, Speech, and Language Processing, IEEE Transactions on , vol.20, no.3, pp.1022,1031, March 2012
[6] An-Kai Li; Sheau-Fang Lei; Wen-Kai Tsai; Shin-Chi Lai, "Fast algorithm and common structure design of recursive analysis and synthesis quadrature mirror filterbanks for digital radio mondiale," Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , vol., no., pp.1199,1202, 1-5 June 2014
[7] Ming Yan; Guorong Hu; Wang Jia, "Design and Implementation of MPEG-4 AAC Decoder on ARM Embedded System for CMMB Receiver," Management and Service Science, 2009. MASS '09. International Conference on , vol., no., pp.1,3, 20-22 Sept. 2009
[8] Shimada, O.; Nomura, T.; Sugiyama, A; Serizawa, M., "DSP implementation of the 3GPP enhanced aacPlus decoder," Consumer Electronics, 2006. ICCE '06. 2006 Digest of Technical Papers. International Conference on , vol., no., pp.277,278, 7-11 Jan. 2006
[9] FAAD website, http://www.audiocoding.com/
[10] T. TSAI and C. LIU, "A Configurable Common Filterbank Processor for Multi-Standard Audio Decoder", IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, Vol. E90-A, No. 9, pp. 1913-1923, Sep. 2007.
[11] ISO/IEC, "Coding of audio-visual objects - Part3: Audio, ISO/IEC Int. Std.14496-3:2005
[12] Y. Jhung and S. Park, “Architecture of dual mode audio filter for AC-3 and MPEG,” IEEE Trans. Consum. Electron., vol.43, no.3, pp.575–585, Aug. 1997.
[13] S.-W. Lee, “Improved algorithm for efficient computation of the forward and backward MDCT in MPEG audio coder,” IEEE Trans. Circuits Syst. II, Express Briefs, vol.48, no.10, pp.990–994, Oct. 2001
[14] Fast IMDCT and MDCT algorithms - a matrix approach," Signal Processing, IEEE Transactions on , vol.51, no.1, pp.221,229, Jan. 2003
doi: 10.1109/TSP.2002.806566
[15] Hui Li; Ping Li; Yiwen Wang; Qi Tang; Lijian Gao, "A New Decomposition Algorithm of DCT-IV/DST-IV for Realizing Fast IMDCT Computation," Signal Processing Letters, IEEE , vol.16, no.9, pp.735,738, Sept. 2009
[16] Lai, S.-C.; Lei, S.-F.; Ching-Hsing Luo, "Common Architecture Design of Novel Recursive MDCT and IMDCT Algorithms for Application to AAC, AAC in DRM, and MP3 Codecs," Circuits and Systems II: Express Briefs, IEEE Transactions on , vol.56, no.10, pp.793,797, Oct. 2009
[17] Lei, S.-F.; Lai, S.-C.; Po-Yin Cheng; Ching-Hsing Luo, "Low Complexity and Fast Computation for Recursive MDCT and IMDCT Algorithms," Circuits and Systems II: Express Briefs, IEEE Transactions on , vol.57, no.7, pp.571,575, July 2010
[18] DERIVATION OF FAST DCT-4 ALGORITHM BASED ON DFT website, http://www.appletonaudio.com/blog/2013/derivation-of-fast-dct-4-algorithm-based-on-dft/
[19] O'Leary, J., Leeser, M., Hickey, J., & Aagaard, M.,"Non-restoring integer square root: A case study in design by principled optimization,"In: Theorem Provers in Circuit Design. Springer Berlin Heidelberg, 1995. p. 52-71.
[20] ARM website, http://www.arm.com/
[21] ALTERA website, http://www.altera.com/

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top