跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭寬淵
研究生(外文):Kuan-yuan Kuo
論文名稱:應用微量流動電解液於電化學線放電加工石英玻璃之研究
論文名稱(外文):Study of Wire Electrochemical Discharge Machining (WECDM) of Quartz Glass with Titrated Electrolyte Flow
指導教授:顏炳華顏炳華引用關係
指導教授(外文):Biing-Hwa Yan
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:110
中文關鍵詞:WECDM微溝槽石英玻璃滴定電解液表面粗糙度
外文關鍵詞:WECDMMicro slitQuartz glassdroplet titrationSurface Roughness
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
石英具有優異性質,但其硬脆特性,傳統加工方式很難在效率與精度二者兼顧,電化學放電加工是以高溫熔融並且蝕刻輔助加工,相當適合於石英材料,WECDM加工系統內絕緣氣膜結構控制不易及加工區域內電解液循環困難,因此,探討WECDM加工機制,開發新加工方式及改善微溝槽表面品質為本論文研究主題。
首先探討流動電解液對加工石英玻璃影響,及氣膜成形特性進行研究,實驗中以石墨粉末之導電特性,分散電化學放電之能量,提升加工後工件表面之精度。並進一步利用碳化矽粉之複合加工方式改善加工效率及精度。實驗結果顯示液滴法電化學放電線切割加工石英玻璃有良好效果,擴槽量及比直性均佳,但表面品質及精度卻無法有效控制。於電解液中加入石墨粉末或加入碳化矽,藉以達到控制精度及改善表面粗度。實驗結果顯示,在相同條件下未加入任何粉末之電解液WECDM加工其表面粗度值Ra=1.13μm,在加入0.4wt%石墨於電解液時,表面粗度可達到Ra=0.36μm,改善率為68%;在加入碳化矽5wt%於電解時,表面粗度可達到Ra=0.22μm,改善率為80%,且在最適當條件下電解液用量極少。證明利用石墨或碳化矽粉之特性在滴定電解液中局部化加工石英玻璃,可有效改善表面品質及減少環境汙染、降低成本、達到1次加工減少加工工序等優點。

Quartz has excellent properties, but its brittleness property results in the difficulty of balance between efficiency and precision for traditional machining method. ECDM aids in machining with high temperature fusion and etching, and is very appropriate for quartz material. In WECDM machining system, uneasy control of insulation gas film structure and difficult electrolyte circulation in machining zone. Therefore, thesis topic is to explore WECDM machining mechanisms, development new methods and improve the micro slit surface quality.
First, investigate the flow of electrolyte influence on the processing of quartz glass, adding graphite powder or silicon carbide powder of composite processing methods to improve the processing efficiency and accuracy. From experimental results, the surface roughness value for electrolyte WECDM machining without adding any powder under the same condition is Ra=1.13μm, while the surface roughness may achieve Ra=0.36μm as 0.4wt% of graphite is added into electrolyte . The improvement rate is 68%. As 5wt% of silicon carbide is added into electrolyte, the surface roughness can achieve Ra=0.22μm, that is, the improvement rate is 80%. Furthermore, electrolyte is used very few under the best appropriate condition. It is proved that the utilization of graphite or silicon carbide characteristics for local machining of quartz glass in titration electrolyte is advantageous of improving surface quality effectively, reducing environmental pollution, lowering cost, and achieving one-time machining to reduce machining procedures.

目 錄
摘 要................................................................................................................i

Abstract.................................................................................................................ii

謝 誌.............................................................................................................. v

目 錄.............................................................................................................. iii

圖 目 錄............................................................................................................. vi

表 目 錄............................................................................................................. ix

第一章 緒論.........................................................................................................1
1-1 研究動機.................................................................................................1
1-2 研究目的.................................................................................................3
1-3 文獻回顧.................................................................................................4
1-4 本論文之構成.........................................................................................9
第二章 研究方法與原理...................................................................................10
2-1 電化學放電加工原理...........................................................................10
2-2 實驗方法與原理介紹...........................................................................15
第三章 應用液滴滴定方法於電化學放電線切割加工石英玻璃之研究.......18
3-1 前言.......................................................................................................18
3-2 實驗設備與方法...................................................................................22
3-2-1 實驗設備....................................................................................22
3-2-2 實驗材料....................................................................................23
3-2-3 實驗原理與步驟........................................................................25
3-3 實驗流程...............................................................................................28
3-4 結果與討論...........................................................................................29
3-4-1液滴內流體流動對絕緣氣膜影響…………………………….29
3-4-1-1電解液與石英玻璃及銅線電極之液滴形成原因..................29
3-4-1-2線電極與液滴接觸距離變化對加工影響……………..........31
3-4-1-3液滴內氧氣泡與氫氣泡分佈對氣膜影響..............................34
3-4-1-4液滴內流體流動方向對加工影響..........................................35
3-4-2電壓對加工深度的影響……………………………………….37
3-4-3流量對加工的影響…………………………………………….40
3-4-4進給速度對加工的影響………………………….…………….42
3-4-5電解液流動方式對加工影響………………………………….45
3-5 結論.......................................................................................................53
第四章 應用石墨粉加入電解液提升電化學放電加工性能之研究...............56
4-1 前言.......................................................................................................56
4-2 實驗設備與方法...................................................................................58
4-2-1 實驗設備....................................................................................58
4-2-2 實驗方法與原理........................................................................60
4-3 實驗流程...............................................................................................64
4-4 結果與討論...........................................................................................66
4-4-1石墨粉於電解液中對加工影響.................................................66
4-4-2流量對加工深度影響.................................................................67
4-4-3電解液流量對表面粗度影響.....................................................68
4-4-4進給速度對表面粗度影響.........................................................70
4-4-5石墨粉濃度對表面粗糙度影響.................................................73
4-5 結論.......................................................................................................76
第五章 應用碳化矽粉加入電解液提升電化學放電加工性能之研究….…..77
5-1 前言.......................................................................................................77
5-2 實驗方法與原理...................................................................................80
5-3 實驗流程...............................................................................................85
5-4 結果與討論.........................................................................................87
5-4-1電解液流量對表面粗糙度影響...................................................87
5-4-2輸入電壓對表面粗糙度影響.......................................................88
5-4-3進給速度對表面粗糙度影響.......................................................90
5-4-4碳化矽含量對表面粗糙度影響...................................................92
5-4-5碳化矽粉於電解液中之加工機制與加工效能...........................94
5-5 結論...................................................................................................100
第六章 總結論.................................................................................................101
參考文獻...........................................................................................................103
作者簡介...........................................................................................................109

















圖 目 錄
圖2-1 ECDM之I-V特性曲線圖..................................................................14
圖2-2 先前學者實驗裝置示意圖…...............................................................17
圖2-3 本實驗裝置示意圖...............................................................................17
圖3-1 WECDM加工石英玻璃實驗設備示意圖................................................23
圖3-2 WECDM加工石英玻璃實驗流程圖........................................................28
圖3-3 電解液包覆石英玻璃及銅線電極之液滴形成至滴落整體變化.......30
圖3-4 線電極在液滴內從形成至滴落之接觸長度示意圖………………...32
圖3-5 液滴滴落時間與線電極接觸長度之關係……………………..……33
圖3-6 液滴內氧氣泡與氫氣泡分佈CCD相片及示意圖……………........34
圖3-7 液滴內流體流動方向CCD相片及示意圖………………................36
圖3-8 電壓對加工的影響..............................................................................37
圖3-9 電壓對電流之波型響應圖..................................................................39
圖3-10 電壓對加工深度影響之SEM圖............................................................39
圖3-11 電解液流量對加工深度及平均寬度影響...........................................41
圖3-12 電解液流量對加工深度影響之SEM圖................................................41
圖3-13 進給速度對加工深度及平均寬度影響...............................................43
圖3-14 進給速度與擴槽量示意圖...................................................................44
圖3-15 進給速度對加工深度影響之SEM圖...................................................44
圖3-16 液滴固定加工方式、連續流體加工方式、液滴滴定加工方式示意
圖與SEM圖及電流響應圖...............................................................49
圖3-17電解液流動方式對擴槽量及深度影響... .............................................50
圖3-18 WECDM液滴滴定法與雷射切割加工石英玻璃之SEM圖.......................51
圖3-19 WECDM液滴滴定法切割加工石英玻璃之SEM圖................................51
圖3-20 WECDM液滴滴定法切割加工不同形狀之石英玻璃SEM圖…………52
圖4-1 石墨粉加入電解液之加工實驗設備示意圖......................................59
圖4-2 WECDM液滴滴定法加工石英玻璃液滴滴落之CCD圖..........................62
圖4-3 WECDM液滴滴定法於未加入任何粉末之石英切割面SEM圖與液滴
內加入石墨粉之示意圖.......................................................................62
圖4-4 石墨粉於電解液內連續放電示意圖...................................................63
圖4-5 石墨粉加入電解液內加工石英玻璃之實驗流程圖...........................65
圖4-6 石墨粉於電解液中加工機制示意圖...................................................66
圖4-7 流量與加工深度關係...........................................................................67
圖4-8 電解液流量與表面粗糙度關係……………………...........................69
圖4-9 電解液流量與表面粗糙度關係之SEM圖..........................................69
圖4-10 進給速度與表面粗糙度關係...............................................................71
圖4-11 進給速度與表面粗糙度關係之SEM圖….........................................72
圖4-12 石墨粉末濃度與表面粗糙度關係.......................................................74
圖4-13 石墨粉末濃度與表面粗糙度關係之SEM圖.......................................75
圖5-1 碳化矽粉加入KOH電解液加工實驗設備示意圖...............................81
圖5-2 (a)電解液中加入碳化矽粉均勻分布於液滴內示意圖(b)碳化
矽粉為非導電物質,放電火花發生在銅電極與電解液之間示意圖.82
圖5-3 加入碳化矽粉之電解液流體在液滴內流動方向及加工機制示意圖
與放電火花分布區域CCD圖...............................................................83
圖5-4 碳化矽粉加入電解液內加工石英玻璃之實驗流程圖.......................86
圖5-5 電解液流量對表面粗糙度影響...........................................................87
圖5-6 輸入電壓對表面粗糙度影響...............................................................88
圖5-7 32V與35V電流密度分布圖...............................................................89
圖5-8 進給速度與表面粗糙度關係...............................................................90
圖5-9 進給速度對表面粗度影響之SEM圖...................................................91
圖5-10 碳化矽含量對表面粗糙度影響........................................................92
圖5-11 碳化矽含量對表面粗糙度影響之SEM圖........................................93
圖5-12 碳化矽粉加工機制示意圖與SEM圖................................................95
圖5-13 WECDM加工石英玻璃,未加入粉末與加入碳化矽粉於滴定電解
液中之SEM圖與電流密度分布響應圖............................................98
圖5-14 WECDM加工石英玻璃,加入碳化矽粉(5wt%)之微溝槽SEM
圖........................................................................................................99




















表 目 錄
表 3-1石英玻璃化學性質及物理性質..............................................................24
表 3-2 黃銅線線電極的機械性質與物理性質................................................24
表 3-3 石墨的物理特性....................................................................................24
表 3-4 WECDM加工石英玻璃參數.....................................................................27
表 4-1 添加石墨粉加工石英玻璃實驗加工參數............................................63
表 5-1 添加碳化矽粉加工石英玻璃實驗加工參數........................................84
表 5-2 未加入粉末與加入碳化矽粉於電解液中之加工效能........................96

參考文獻
1. H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Ann. CIRP. Vol. 16, pp. 415-419, 1968.
2. V. Fascio, R. Wüthrich, H. Bleuler, “ Spark assisted chemical engraving in the light of electrochemistry”, Electrochimica Acta, Vol. 49, pp.3997-4003, 2004.
3. V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol. 52, pp. 301-318, 1995.
4. I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical dischargemachining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
5. I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 71, pp. 350-359, 1997.
6. B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol. 95, pp. 145-54, 1999.
7. V. K. Jain, P. M. Dixit and P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 165-186, 1999
8. C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM) ”, Key Engineering Material. Vol. 196, pp. 149-166, 2001.
9. H. J. Lim, Y. M. Lim, S. M. Kim and Y. K. Kwak, “Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials”, Proceedings of SPIE, Vol. 4416, pp. 348-353, 2001.
10. R. Kulkarni and G.K. Sharan, “An experimental study of discharge mechanism in electrochemical discharge machining”, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1121–1127, 2002.
11. H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of Pyrex glass devices - trajectory control”, International Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven), Vol. 2, pp. 435-438, 2002.
12. V. Fascio, H.H. Langen, H. Bleuler, Ch. Comninellis, “Investigations of the spark assisted chemical engraving”, Electrochemistry Communications, Vol. 5, pp. 203–207, 2003.
13. T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, J.A. McGeough, “An intelligent pulse classification system for electro-chemical dischargemachining (ECDM)—a preliminary study”, Journal of Materials Processing Technology, Vol. 149, pp. 499–503, 2004.
14. W.Y. Peng, Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol. 149, pp. 363–369, 2004.
15. R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. H. Mandin and G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol.15, pp. 268-275, 2005.
16. D. J. Kim, Y Ahn, S. H. Lee and Y. K. Kin, “Voltage pulse frequency and duty ratio effects in and electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools & Manufacture, Vol. 46 ,pp. 1064-1067, 2006.
17. R. Wüthrich, U. Spaetler and H. Bleuler, “The current signal in spark assisted chemical engraving (SACE), what does it tell us? ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-785, 2006.
18. B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol. 95, pp. 145-154, 1999.
19. C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang, “Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 2044-2050, 2006.
20. W. Jonathan, J. Amol, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 403-409, 2006.
21. R. Wüthrich, L.A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools & Manufacture, Vol. 46 , pp. 828–835, 2006.
22. Z.P, Zheng, H.C. Su, F.Y. Huang and B.H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 265-272, 2007.
23. Sanjay K. Chak, and P. Venkateswara Rao, “Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply”, International Journal of Machine Tools & Manufacture, Vol. 47, pp. 2061–2070, 2007.
24. M.S. Han, B.K. Min, and S.J. Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte”, Journal of Materials Processing Technology, Vol. 191, pp. 224–227, 2007.
25. M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
26. M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
27. X.D. Cao, B.H. Kim and C.N. Chu, “Micro-structuring of glass with features less than 100_m by electrochemical discharge machining”, Precision Engineering, Vol. 33, pp. 459–465, 2009.
28. C.K.Yang﹐C.P.Cheng﹐Effect of surface roughness of tool electrode materials in ECDM performance,International Journal of Machine Tools&Manufacture, Vol.50, pp.1088-1096,2010.
29. Min-Seop Han, Byung-Kwon Min, Sang Jo Lee,Micro-electrochemical discharge cutting of glass using a surface-textured tool.CIRP Journal of Manufacturing Science and Technology , Vol.4, pp.362–369, 2011.
30. Ziki JA, Didar TF, Wüthrich R, Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int J Mach Tools Manuf, Vol. 57, pp.66–72, 2012.
31. Manna A, Kunda A, An experimental investigation on fabricated TW-ECSM setup during micro slicing of nonconductive ceramic. Int J Adv Manuf Technol. doi:10.1007/s00170-013-5145-0,2013.
32. Wang M, Liu W, Peng W Multiphysics research in electrochemical machining of internal spiral hole. Int J AdvManuf Technol, Vol. 74, pp.749–756 , 2014.
33. Black I, Livingstone S. A .J and Chua K. L, “A laser beam machining (LBM) database for the cutting of ceramic tile”, Journal of Materials Processing Technology. Vol.84 pp.47–55,1998.
34. Choi G.S and Choi G.H , “Process analysis and monitoring in abrasive water jet machining of alumina ceramics”, International Journal of Machine Tools & Manufacture, Vol.37 pp.295–307,1997.
35. H.Tsuchiya﹐T.inoue﹐M.Miyazaiki﹐“Wire electro-chemical discharge machining of glass and ceramics”﹐Bulletin Japanese Society of Precision Engineering﹐Vol.19,p.73,1985.
36. M. Kock, V. Kirchner and R. Schuster, “ Electrochemical Micromachining with Ultrashort Voltage Pulses-a Versatile Method with Lithographical Precision”, Electrochimica Acta, Vol. 48, pp. 3213-3219 , 2003.
37. J. A. Kenny and G. S. Hwang, “Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses,” Electrochemical and Solid-State Letters, Vol. 9, No.1, pp. D1-D4,2006.
38. Zhi-Ping Zheng,Wei-Hsin Cheng, “3D microstructuring of Pyrex glass using the electrochemical discharge machining process,” Journal of Micromechanics and Microengineering, Vol.17 , pp. 960–966, 2007
39. Zheng Z P, Lin J K, Huang F Y and Yan B H, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol. 18, pp. 025014,2008
40. N. Mohri, N. Saito, T. Takawashi and T. Takawashi, “Mirror-Like Finishing by EDM”, Proceedings of the 25th International Symposium on Machine Tool Design and Symposium, UK, pp.329-336, 1985.
41. H. Narumiya, N. Mohri, N. Saito, H. Ootake, T. Takawashi and K Kobayashi, “Finishing on the Large Area of Work Surface by EDM, Japan Society of Precision Engineering, Vol.53, No.1, pp.124-130, 1987.
42. H. Narumiya, N. Mohri and M. Suzuki, “Surface Modification by EDM”, Research and Technological Development in Nontraditional Machining, Proceedings of the Winter Annual Meeting of the ASME, Chicago, USA, Vol.34, pp.21-30,1988.
43. H. Narumiya, N. Mohri, N. Saito, H. Ootake, Y. Tsunekawa, T. Takawashi and K. Kobayashi, “EDM by Powder Suspended Working Fluid”, Proceedings of International synposium for Electro-Machining, The Japan Society of Electrical-Machining Engineers, pp.5-8, 1989.
44. B.H.Yan, S.L Chen, “ Effect of dielectric with suspended aluminum powder on EDM, ” Journal of the Chinese Society of Mechanical Engineers,Vol.14, No.3, pp307-312, 1993.
45. B.H.Yan, S.L Chen, “Characteristics of SKDII by complex process of electrical discharge machining using liquid suspended with aluminum powder,”Journalof the JapanInstitute of Metals,Vol.58,No.9, pp.1067-1072, 1994
46. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study” , The Journal of Physical Chemistry , Vol. 111 (37), pp 13794–13803,2007.
47. W.S. Zhao, Q.G. Meng, Z.L.Wang, “The application of research on powder mixed EDM in rough machining”, Journal of Materials Processing Technology, Vol. 129 , pp .30-33, 2002.
48. P. Felsenthal, B. Vonnegut, “Enhanced charge transfer in dielectric fluids containing conducting particles”, British Journal of Applied Physics,Vol.18
, pp .1801–1806, 1967.
49. M.S. Han, B.K. Min, and S.J. Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte”, Journal of Materials Processing Technology, Vol. 191, pp. 224–227, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top