跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁瑞麟
研究生(外文):Jui-Lin Liang
論文名稱:耐延遲網路下基於封包複製模式的路由機制之模擬及效能比較
論文名稱(外文):A study on replication-based routing schemes in delay-tolerant networks: simulation and performance comparison
指導教授:胡誌麟
指導教授(外文):Chin-Lin Hu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:通訊工程學系在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:耐延遲網路路由機制密度導向模擬量測
外文關鍵詞:Delay Tolerant NetworksRouring SchemeDensity-AwareNCU-Trace
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在耐延遲網路環境下,節點間並不存在一條固定的資料路由路徑,且又因節點的密度及傳輸距離等的限制,嚴重影響封包路由機制的運作,因此傳統網路的路由協定並不適合耐延遲網路。為了改善資料傳輸效能,耐延遲路由的設計大多是利用增加封包複製數,或是與相遇節點建立連線時,利用效用值來選擇有利的轉送節點等方式來增加封包抵達率或減低封包傳輸的延遲。然而過度的封包複製數及選擇轉送節點所需額外記錄的節點資訊,將導致網路資源的浪費。本論文利用Epidemic, PRoPHET , Spray and Wait , DARS路由及Random walk , Random waypoint , TVCM , SLAW移動模型進行模擬量測,以及使用NCU-Trace追蹤人類的真實移動軌跡,以比較各路由在不同移動模型下的傳輸效能。本論文除了探討基本的封包抵達率,封包傳輸花費以及封包傳輸的延遲時間,另外還探討緩衝區使用的情況,丟棄封包與路由節點的關係;以及封包在緩衝區存活的時間。除此之外,亦針對DARS路由探討封包轉送(Handoff)的問題及緩衝區對DARS路由的影響。這些數據將讓我們了解耐延遲網路中,不同路由機制下的封包複製及傳遞會因為哪些參數設定而被影響,從而提供我們之後在設計路由上的參考依據,以設計效能更佳的路由機制。

In delay tolerant network environment, no fixed data routing path exists, and due to the limitation of node density and transmission distance, seriously affect the operation of the packet routing mechanism, therefore the traditional network routing protocol is not suitable for use in delay tolerant network. To improve data transmission performance, delay tolerant routing is designed mostly by increasing the quantity of packet copies, or designed when connecting with the encounter node, evaluate the utility value to select favorable transfer node, with these methods to increase the packet delivery ratio or to reduce the delay of packet transmission. However, excessive packet copies and the additional recorded node data needed for selecting transfer node, will lead to a waste of network resources. In this paper, we use Epidemic, PRoPHET, Spray and Wait, DARS routing and Random walk, Random waypoint, TVCM, SLAW mobility models to simulate, and also use NCU-Trace to trace human’s real movement footmark, to compare the transfer performance of each router under different mobility models. In this paper, not only discuss packet delivery rate, packet transmission cost, packet latency rate, but also discuss the use status of buffer, the relationship between drop packet and routing node; and packet survival time in Buffer. In DARS routing, also discuss the packet handoff problem and the affect of Buffer toward DARS routing. These data let us know in delay tolerant network, packet copies and delivery are affected by which parameter settings in different routing mechanism, therefore can provide us as reference basis for better performance routing mechanism design in the future.

目錄

摘要 i
目錄 iii
圖目錄 vi
表目錄 viii
第一章1
簡介1
第二章5
相關文獻探討5
2.1 DTN效能比較方式5
2.2 封包複製機制6
2.2.1 Flooding-base 6
2.2.2 Copy-limited replication: 8
2.3 耐延遲網路中節點移動模型之探討與比較10
第三章13
模擬系統與量測方式13
3.1 耐延遲網路模擬環境的組成13
3.2 移動模型設計及設定15
3.2.1 Random Walk 隨機漫遊15
3.2.2 Random waypoint 隨機航點16
3.2.3 TVCM(Time-variant Community Mobility)模擬軌跡檔17
3.2.4 SLAW(Self-similar Least Action Walk) 節點移動模型21
第四章23
模擬量測結果與分析23
4.1 Random Walk24
4.1.1 Delivery ratio : 封包抵達率24
4.1.2 Random walk 701X601-C16 : 封包在緩衝區存活時間29
4.1.3 Random walk 701X601 : DARS封包丟棄數及轉送的比率31
4.1.4 Random walk 701X601 : 封包丟棄數 32
4.1.5 Overhead Random walk 701X601-C16 : 封包傳輸的花費37
4.1.6 Latency ratio–C16 : 平封封包傳遞延遲時間38
4.2 Random Way Point39
4.2.1 delivery ratio : 封包抵達率39
4.2.1.1 Random waypoint 701X601 : 封包抵達率40
4.2.1.2 Random waypoint : 封包丟棄41
4.2.1.3 Random waypoint 1402X1202 : 封包抵達率45
4.2.1.4 Random waypoint : 封包丟棄47
4.2.1.5 Random waypoint 2804X2404 : 封包抵達率50
4.2.1.6 Random waypoint:封包丟棄53
4.2.2 Random waypoint : 封包在緩衝區存活時間56
4.2.3 Random waypoint : 封包丟棄數與封包轉送比率59
4.2.4 Overhead ratio : 封包傳輸的花費61
4.2.5 Latency : 平均封包的傳遞延遲時間63
4.3 SLAW 65
4.3.1 delivery ratio : 封包抵達率65
4.3.2 Overhead ratio : 封包傳輸的花費68
4.3.3 Latency ratio : 平均封包的傳遞延遲時間69
4.4 TVCM 71
4.4.1 delivery ratio : 封包抵達率71
4.4.2 Overhead ratio : 封包傳輸的花費74
4.4.3 Latency ratio : 平均封包的傳遞延遲時間77
4.5 NCU-Trace 80
4.5.1 delivery ratio : 封包抵達率80
4.5.2 Overhead ratio : 封包傳輸的花費82
4.5.3 Latency ratio : 平均封包的傳遞延遲時間84
4.6 總結分析86
第五章88
結論與未來研究工作88
參考文獻89

[1] Kevin Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” In Proceedings of ACM SIGCOMM’03, pages 27–34, August 2003.
[2] Sushant Jain, Kevin Fall, and Rabin Patra, “Routing in a Delay Tolerant Network,” In Proceedings of ACM SIGCOMM Computer Communication Review, vol. 34, no.4, pages 145–158, August 2004.
[3] DTN Research Group, http://www.ietf.org/rfc/rfc4838.txt
[4] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra, “Spray and Wait: an Efficient Routing Scheme for Intermittently Connected Mobile Networks,” In Proceedings of ACM SIGCOMM Workshop on Delay-Tolerant Networking, pages 252–259, 2005.
[5] Xin Wang, Yantai Shu, Zhigang Jin, Qingfen Pan, and Bu Sung Lee, “Adaptive Randomized Epidemic Routing for Disruption Tolerant Networks,” In Proceedings of Mobile Ad-hoc and Sensor Networks, pages 424–429, December 2009.
[6] Amin Vahdat, and David Becker, “Epidemic Routing for Partially-Connected Ad Hoc Networks,” Duke University, Tech. Rep. CS-200006, April 2000.
[7] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra, “Spray and Wait: an Efficient Routing Scheme for Intermittently Connected Mobile Networks,” In Proceedings of ACM SIGCOMM Workshop on Delay-Tolerant Networking, pages 252–259, 2005..
[8] Samuel C. Nelson, Mehedi Bakht, and Robin Kravets, “Encounter-Based Routing in DTNs,” In Proceedings of IEEE INFOCOM’09, pages 846–854, April 2009.
[9] Nathanael Thompson, Samuel C. Nelson, Mehedi Bakht, Tarek Abdelzaher, and Robin Kravets, “Retiring Replicants: Congestion Control for Intermittently-Connected Networks,” In Proceedings of IEEE INFOCOM’10, pages 1–9, March 2010.
[10] P.Juang,H.Oki,Y.Wang,M.Martonosi,L.S.Peh,andD.Rubenstein,“Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 96–107, Oct. 2002.
[11] Y.Li,M.Qian,D.Jin,L.Su,andL.Zeng,“Adaptiveoptimal managementpolicies for realistic dtn,” in Proceedings of IEEE Global Telecommunications Conference, pp. 1 –5, 30 2009-dec. 4 2009.
[12] Anders Lindgren, Avri Doria, and Olov Schelén, “Probabilistic Routing in Intermittently Connected Networks,” ACM SIGMOBILE Mobile Computing and Communications Review, vol.7, no.3, pages 19–20, 2003.
[13] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra, “Spray and Focus: Efficient Mobility-Assisted Routing for Heterogeneous and Correlated Mobility,” In Proceedings of IEEE Pervasive Computing and Communications Workshops, pages 79–85, March 2007.
[14] John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine, “MaxProp: Routing for Vehicle-based Disruption-Tolerant Networking,” In Proceedings of IEEE INFOCOM’06, pages 398–408, April 2006.
[15] Camp, Tracy, Jeff Boleng, and Vanessa Davies. "A survey of mobility models for ad hoc network research." Wireless communications and mobile computing 2.5 (2002): 483-502.
[16] Yoon, Jungkeun, Mingyan Liu, and Brian Noble. "Random waypoint considered harmful." INFOCOM 2003. twenty-second annual joint conference of the IEEE computer and communications. IEEE societies. Vol. 2. IEEE, 2003.
[17] Hsu, Wei-Jen, et al. "Modeling spatial and temporal dependencies of user mobility in wireless mobile networks." IEEE/ACM Transactions on Networking (ToN) 17.5 (2009): 1564-1577.
[18] Lee, Kyunghan, et al. "Slaw: A new mobility model for human walks." INFOCOM 2009, IEEE. IEEE, 2009.
[19] ALAJEELY, Majeed; DOSS, Robin. Comparative Study of Routing Protocols for Opportunistic Networks. In: ICST 2013: Proceedings of the 7th International Conference on Sensing Technology. IEEE, 2013. p. 209-214.D
[20] MASSRI, Khalil; VERNATA, Alessandro; VITALETTI, Andrea. Routing protocols for delay tolerant networks: a quantitative evaluation. In: Proceedings of the 7th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks. ACM, 2012. p. 107-114
[21] JAIN, Akhilesh, et al. Distributing jobs in Delay-Tolerant Networks: Is optimization worth it?. In: Recent Trends in Information Technology (ICRTIT), 2014 International Conference on. IEEE, 2014. p. 1-5.
[22] Shally1, Harminder Singh Bindra2, Mamta Garg3 “PERFORMANCE EVALUATION OF RAPID AND SPRAY-AND-WAIT DTN ROUTING PROTOCOLS UNDER BLACK HOLE ATTACK” IJRET: International Journal of Research in Engineering and Technology Volume: 03 Issue: 01 | Jan-2014,
[23] Hu, Chih-Lin, and Bing-Jung Hsieh. "A density-aware routing scheme in delay tolerant networks." Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, 2012.
[24] M. C. Gonz ́alez, C. A. Hidalgo, and A.-L. Barab ́asi, “Understanding individual human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, 2008.
[25] I. Rhee, M. S. S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the levy-walk nature of human mobility,” IEEE/ACM Transactions on Networking, vol. 19, pp. 630–643, Jun 2011.
[26] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real user traces,” in Proceedings of IEEE INFOCOM, pp. 1–13, April 2006.
[27] Keränen, Ari, Jörg Ott, and Teemu Kärkkäinen. "The ONE simulator for DTN protocol evaluation." Proceedings of the 2nd international conference on simulation tools and techniques. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2000

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top