(3.235.108.188) 您好!臺灣時間:2021/03/03 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳重佑
論文名稱:綠色合成法製備金/銀奈米材料於提升 表面增強拉曼光譜訊號
論文名稱(外文):Improved surface-enhanced Raman scattering performances on green synthesis of tea-gold/silver nanomaterials
指導教授:林泱蔚
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:52
中文關鍵詞:綠色化學表面增強拉曼散射奈米團簇
相關次數:
  • 被引用被引用:5
  • 點閱點閱:346
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用綠茶萃取液作為還原劑及分散劑,混和金屬離子溶液(〖Au〗^(3+) 、〖Ag〗^+),成功開發出了一步綠色合成法,擺脫以往複合材料使用有機溶劑作為添加劑的非水相合成法。
金奈米團簇、銀奈米粒子及金/銀奈米團簇以盤式吸收/螢光光譜儀測得其最大吸收波長分別為566 nm、425 nm、475 nm。並以高解析度穿透式電子顯微鏡鑑定其奈米粒子大小分別為85.2 ± 8.3﹐27 ± 2.4 和 86.2 ± 8.3 nm。
接著,我們將著手於比較金奈米團簇,銀奈米粒子及金/銀奈米團簇於表面增強拉曼散射光譜(surface enhanced Raman scattering,SERS)的應用潛力,我們以4-巰基苯甲酸吸附於材料上製成奈米拉曼探針,其針對特徵訊號峰1590 cm-1拉曼訊號增強倍率為3.04×106、 4.84×105、5.01×107。金奈米團簇其形狀相對於銀奈米粒子而言,較為不規則,因此具有較強的局部電場,提供相對較強的拉曼訊號,而金/銀奈米團簇混和了兩種金屬,形成了二聚體,得到分布更為均勻的熱點,因此具有最好的增強效果。
為了進一步探討金/銀奈米團簇的穩定性及應用性,我們改變了材料所處的溶液環境、離子強度、酸鹼值等條件,結果發現在一定的條件下其訊號不太受環境所影響,而為了將此材料未來能應用於蛋白質檢測上,我們選擇以牛血清蛋白(Bovine serum albumin,BSA)來測試能否有效防止非特異性吸附,結果說明了藉由吸附BSA來防止非特異性吸附之外亦有立體效應,使本篇材料在乾燥過程中聚集的效應降低,使其拉曼訊號有更加提升的效果。

Tea-gold nanosponges (T-Au NSs), tea-silver nanoparticles (T-Ag NPs), and tea-gold/silver nanosponges (T-Au/Ag NSs) synthesized by mixing a tea infusion with gold (silver) ions were demonstrated. UV-Vis absorption spectra of the T-Au NSs and T-Ag NPs exhibited SPR absorption bands at 566 and 425 nm, respectively. When equal concentrations of Ag(I) and Au(III) ions were mixed with the tea infusion, the SPR band (475 nm) of the resultant nanostructure was observed between the SPR bands of the T-Au NSs and T-Ag NPs. In 1× tea infusions, small Au NPs (710 nm) were formed first, which underwent self-assembly to form sponge-like Au nanostructures with a diameter of 85.2 ± 8.3 nm, mainly through interactions between the phytochemicals on the surfaces of the as-prepared Au NPs. In addition, the formation of polyphenols on the Ag NPs surface via auto-polymerization did not occur because there were too few stabilizing molecules on the surfaces of the smaller particles. Consequently, only spherical T-Ag NPs were formed with a diameter of 27.0 ± 2.4 nm. When equal concentrations of Ag(I) and Au(III) ions were mixed with the same concentration of tea infusion, core-shell-type T-Au/Ag NSs were observed with a diameter of 86.2 ± 8.2 nm.
The potential for use of the T-Au NSs, T-Ag NPs, and T-Au/Ag NSs in surface-enhanced Raman scattering (SERS) applications was investigated. Using the peak at1590 cm−1, it was determined that the SERS EF was 3.04  106 for the T-Au NSs and 4.84  105 for the T-Ag NPs. In addition, the SERS enhancement factor for the T-Au NSs was further enhanced (EF of 5.01  107). The T-Au/Ag NSs mixture of two metals, the formation of a dimer, to obtain a more uniform distribution of hot spots, and therefore has the best reinforcing effect.

目錄
第一章 序論.................1
1-1前言....1
1-2研究動機........3
1-3論文架構........3
第二章 表面增強拉曼光譜與金/銀奈米複合材料 .....5
2-1表面增強拉曼光譜簡介............5
2-1-1拉曼光譜 ................5
2-1-2 表面增強拉曼光譜(SERS) ......7
2-1-3表面增強拉曼光譜基材選擇 ..........10
2-1-4表面增強拉曼光譜應用 .........14
2-2金/銀奈米複合材料........16
2-2-1奈米材料性質 ......16
2-2-2金/銀奈米複合材料的發展 ....18
第三章 綠色合成法製備金銀奈米團簇於表面增強拉曼光譜應用.......19
3-1實驗藥品與方法.............19
3-1-1實驗藥品與儀器 ...........19
3-1-2製備金奈米團簇、銀奈米粒子、金/銀奈米團簇 ........20
3-1-3金/銀奈米團簇特性鑑定 ........22
3-1-4表面增強拉曼光譜測量 .........22
3-2結果與討論............24
3-2-1綠色合成的金奈米團簇、銀奈米粒子、金/銀奈米團簇 ......24
3-2-2 金奈米團簇、銀奈米粒子、金/銀奈米團簇物性鑑定 .........25
3-2-3探討金/銀奈米團簇成長機制 .........29
3-2-4茶液中的兒茶素含量分析及合成測試 ................32
3-2-5 金奈米團簇、銀奈米粒子、金/銀奈米團簇表面增強拉曼光譜 ..35
3-2-6最佳化參數之探討 .......37
3-2-6.1探討以不同金銀濃度所合成金/銀奈米團簇…..........37
3-2-6.2探討金/銀奈米團簇於不同種類緩衝溶液下的影響….....40
3-2-6.3探討金/銀奈米團簇於不同pH值緩衝溶液下的影響…...42
3-2-5.4探討金/銀奈米團簇不同濃度緩衝溶液下的影響……….43
3-2-6.5探討金/銀奈米團簇的非特異性吸附…………………….44
3-2-7再現性及靈敏度 ...........46
第四章 結論與未來展望..............48
4-1結論..............48
4-2未來展望......49
參考資料…………………………50

圖表目錄
表1.複合金屬奈米材料來回顧表…………………………………….………..13
表2.內標準法製備參數………………………………………………….……..33
表3. 三重複之合成比較…………………………………………….……..47

圖1.拉曼光譜…………………………………………………….…...…..06
圖2.表面增強拉曼散射示意圖………………………….……..…...….08
圖3.電磁增強(Electromagnetic enhancement)…………......09
圖4.化學增強(Chemical enhancement)……………………......09
圖5.煮茶過程示意圖………………………………………….………...21
圖6.合成金奈米團簇示意圖……………………………………………....21
圖7.拉曼偵測樣品製備示意圖……………………………….………...23
圖8. 金奈米團簇、銀奈米粒子、金/銀奈米團簇吸收光譜圖.…………26
圖9.金奈米團簇、銀奈米粒子、金/銀奈米團簇之TEM圖、SEM………....27
圖10.金奈米團簇、銀奈米粒子、金/銀奈米團簇之EDS圖譜、XRD圖…..28
圖11.金/銀奈米團簇之SALDI-MS圖譜、FT-IR圖譜………………………..30
圖12.金/銀奈米團簇反應未完時TEM圖、EDS圖……………..……..….31
圖13.兒茶素內標準法(吸收-濃度)吸收圖…………………………………33
圖14. 茶葉及兒茶素合成金/銀奈米團簇吸收圖…………………..34
圖15.金奈米團簇、銀奈米粒子、金/銀奈米團簇之拉曼光譜圖………..36
圖16.有無修飾底層銀奈米粒子之金/銀奈米團簇拉曼圖……………………..36
圖17.不同初濃度金銀溶液合成之金/銀奈米團簇吸收與拉曼圖………….38
圖18.不同初濃度金銀溶液合成之金/銀奈米團簇TEM圖…........39
圖19. 不同緩衝溶液中4-MBA於1590 cm-1的拉曼訊號強度圖……….…..41
圖20.不同pH值中4-MBA於1590 cm-1的拉曼訊號光譜圖…………….....42
圖21. 不同濃度中4-MBA於1590 cm-1的拉曼訊號光譜圖………….…..43
圖22.添加BSA與4-MBA順序不同的拉曼訊號……………………..……….45
圖23金/銀奈米團簇吸附不同濃度4-MBA拉曼圖…………………..………..46

1. El-Brolossy, T.A., et al., Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. The European Physical Journal Special Topics, 2008. 153(1): p. 361-364.
2. Bunghez, I.R., et al., Antioxidant silver nanoparticles green synthesized using ornamental plants. Journal of Optoelectronics and Advanced Materials, 2012. 14(11-12): p. 1016-1022.
3. Hou, W. and S.B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 2013. 23(13): p. 1612-1619.
4. Lin, Y.-W., C.-C. Huang, and H.-T. Chang, Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst, 2011. 136(5): p. 863-871.
5. Lin, Y.-W., C.-W. Liu, and H.-T. Chang, DNA functionalized gold nanoparticles for bioanalysis. Analytical Methods, 2009. 1(1): p. 14-24.
6. Vilela, D., M.C. González, and A. Escarpa, Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Analytica Chimica Acta, 2012. 751(0): p. 24-43.
7. Krishnamurthy, S. and Y.-S. Yun, Recovery of microbially synthesized gold nanoparticles using sodium citrate and detergents. Chemical Engineering Journal, 2013. 214(0): p. 253-261.
8. Peng, X., et al., Synthesis, characterization, and application of PdPt and PdRh bimetallic nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Catalysis Communications, 2009. 11(1): p. 62-66.
9. Im, A.R., et al., Enhanced Antibacterial Activities of Leonuri Herba Extracts Containing Silver Nanoparticles. Phytotherapy Research, 2012. 26(8): p. 1249-1255.
10. Jagajjanani Rao, K. and S. Paria, Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Materials Research Bulletin, 2013. 48(2): p. 628-634.
11. Mittal, A.K., Y. Chisti, and U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 2013. 31(2): p. 346-356.
12. Sujitha, M.V. and S. Kannan, Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 102(0): p. 15-23.
13. Zhang, G., et al., Green synthesis of Au-Ag alloy nanoparticles using Cacumen platycladi extract. RSC Advances, 2013. 3(6): p. 1878-1884.
14. Colthup, N.B., L.H. Daly, and S.E. Wiberley, CHAPTER 11 - AMINES, C=N, AND N=O COMPOUNDS, in Introduction to Infrared and Raman Spectroscopy (Third Edition), N.B. Colthup, L.H. Daly, and S.E. Wiberley, Editors. 1990, Academic Press: San Diego. p. 339-354.
15. Kruszewski, S., Surface enhanced Raman scattering phenomenon. Crystal Research and Technology, 2006. 41(6): p. 562-569.
16. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
17. Chang, T.-H., et al., Electroless Plating Growth Au-Ag Core-Shell Nanoparticles for Surface Enhanced Raman Scattering. Int. J. Electrochem. Sci., 2013. 8: p. 6889 - 6899.
18. Sivashanmugan, K., et al., Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection. Sensors and Actuators B: Chemical, 2013. 181(0): p. 361-367.
19. Contreras-Caceres, R., et al., Polymers as Templates for Au and Au@Ag Bimetallic Nanorods: UV–Vis and Surface Enhanced Raman Spectroscopy. Chemistry of Materials, 2012. 25(2): p. 158-169.
20. Zheng, P., et al., Synthesis, Structure and Growth Mechanism of Size and Shape Tunable Au/Ag Bimetallic Nanoparticles. Chinese Journal of Chemistry, 2009. 27(11): p. 2137-2144.
21. Wang, Y., et al., Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells. Analyst, 2013. 138(6): p. 1764-1771.
22. Karthikeyan, B. and B. Loganathan, Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Materials Letters, 2012. 85(0): p. 53-56.
23. Jarvis, R.M. and R. Goodacre, Characterisation and identification of bacteria using SERS. Chemical Society Reviews, 2008. 37(5): p. 931-936.
24. van de Vossenberg, J., et al., Identification of bacteria in drinking water with Raman spectroscopy. Analytical Methods, 2013. 5(11): p. 2679-2687.
25. Lin, C.-C., et al., A new protein A assay based on Raman reporter labeled immunogold nanoparticles. Biosensors and Bioelectronics, 2008. 24(2): p. 178-183.
26. Front cover. Chemical Society Reviews, 2008. 37(5): p. 873-874.
27. Kubo, R., Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan, 1962. 17(6): p. 975-986.
28. Sabur, A., M. Havel, and Y. Gogotsi, SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. Journal of Raman Spectroscopy, 2008. 39(1): p. 61-67.
29. 資策會科技法律中心-美國加州通過綠色化學法規

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔