跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宏仁
研究生(外文):Hong-Ren Wu
論文名稱:探討鹽害逆境下水稻(‎Oryza sativa)幼苗多元胺、類胡蘿蔔素與Orange(Or)基因之相關性
論文名稱(外文):Investigating the relationships among polyamines, carotenoids and Orange gene in rice (Oryza sativa) seedling under salt stress
指導教授:林忠毅林忠毅引用關係
指導教授(外文):John-Yee Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:多元胺水稻Orange基因鹽害類胡蘿蔔素
外文關鍵詞:polyaminesOryza sativaOrange genesalt stresscarotnoids
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物生長時會遭遇到許多壓力,其中鹽害壓力是指環境中存在過多的無機鹽類,會造成滲透壓改變、離子毒害及氧化壓力等影響。植物的耐鹽境能力是很重要的研究課題。多元胺是一類帶有多個胺基的有機化合物,植物中主要含有putrescine、spermidine及spermine三種多元胺。許多研究指出逆境壓力下多元胺含量會增加,提高逆境的耐受性。除了多元胺之外,近年在橘色花椰菜中發現一個基因並命名為Orange(Or),Or基因也會對逆境產生反應,且過度表現Or基因會使得類胡蘿蔔素(carotenoids)含量增加,且提高植物的抗氧化能力。但Or基因如何影響植物的類胡蘿蔔素合成尚未有明確的答案也,不清楚Or基因是否受到多元胺的調控,因此,本研究在於探討多元胺代謝是否與Or基因有所相關。實驗證實鹽害壓力會造成水稻鮮重下降、葉綠素及類胡蘿蔔素減少,抗氧化能力、MDA含量及Or基因表現量則會增加。但經過多元胺與類胡蘿蔔素抑制劑處理後除了抗氧化能力MDA提高之外,Or基因表現受到抑制,顯示出多元胺可能參與調控Or基因表現。定序分析發現在不同植物間的Or保守性很高,且都共同有兩個極為保守的zinc finger domain。

Salt stress, one of environment stresses, affects plant physiology and causes some damage to plants such as electrolyte leakage. Plants have evolved many mechanisms to prevent themself from injury by stresses. Polyamines have been known as anti-stress molecules and the major polyamines in higher plants are putrescine, spermidine and spermine. Studies indicated that the synthesis of polyamines increased if plants had been under stresses, probably for the purpose of increasing stress torelance. Recently, a mutant gene called Orange (Or), which accumulated great amount of carotnoids, was found in cauliflower. But how the Or gene affects the carotnoid is still unknown. In this study, 14 days-old seedlings of rice (Oryza sativa) had been treated with various concentrations of Sodium chloride, and then certain characteristics such as fresh weight, chlorophyll, carotnoids, malondialdehyde (MDA), DPPH scavenging activity and Or gene expression were analyzed. Results showed that rice seedings treated with high salt concentrations, fresh weight, DPPH scavenging activity, chlorophyll and carotnoids content were significantly reduced comparing to controls. Whereas, the MDA content and Or gene expression were increased. The result that Or gene expression, chlorophyll and carotnoids content were reduced after treatment with polyamine and carotenoids synthesis inhibitor, MGBG and Fluridone, suggesting Or gene might be regulated by polyamines in controlling synthesis of carotnoids.

摘要 i
Abstract ii
致謝 iii
目次 I
圖與表 III
一、前言 1
1-1環境壓力、逆境與植物生長 1
1-1.1 溫度與光線對植物造成的影響與傷害 1
1-1.2 乾旱與鹽害對植物造成的影響與傷害 2
1-1.3 逆境所造成的傷害指標 2
1-2 植物對於環境壓力的反應 3
1-2.1 滲透壓調節 3
1-2.2抗氧化能力 4
1-2.3 激素與分子訊號 5
1-3多元胺在植物中的生化合成與代謝 6
1-4類胡蘿蔔素在植物體功能 7
1-5類胡蘿蔔素在植物體中的主要生合成路徑 8
1-6 Orange基因之發現與功能 9
1-7研究目的 10
二、材料與方法 12
2-1植物培育及生長條件 12
2-2水稻Or基因之分析 12
2-2.1植物之RNA萃取 12
2-2.2 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 13
2-2.3 DNA 瓊酯膠體電泳 14
2-3多元胺萃取及分析 16
2-4植物色素萃取、分析與定量 17
2-5丙二醛(Malondialdehyde, MDA)萃取與定量 18
2-6 DPPH自由基清除能力檢測 19
2-7 統計方法 19
三、結果 20
3-1 不同物種間Or序列比對與親緣分析 20
3-2鹽害逆境對植物生理代謝的影響 24
3-2.1鮮重 24
3-2.2 MDA含量 24
3-2.3 清除DPPH自由基能力 24
3-2.4 葉綠素含量 28
3-2.5 類胡蘿蔔素含量 28
3-2.6 Or基因表現量 28
3-2.8 小結 34
3-3鹽害下多元胺及類胡蘿蔔素對水稻的抗逆境生理活性的表現 34
3-3.1鹽害逆境下多元胺及類胡蘿蔔素對MDA含量的影響 34
3-3.2鹽害逆境下多元胺及類胡蘿蔔素之對逆境下DPPH清除能力的影響 35
3-3.4鹽害逆境下多元胺及類胡蘿蔔素抑制劑對葉綠素含量的影響 38
3-3.7鹽害逆境下多元胺及類胡蘿蔔素抑制劑對類胡蘿蔔素含量的影響 38
3-3.6鹽害逆境下多元胺及類胡蘿蔔素對Or基因的影響 38
3-3.7 小結 43
四、討論 44
4-1不同物種間Or序列比對與親緣分析 44
4-2鹽害逆境對植物生理代謝的影響 45
4-3 鹽害下多元胺及類胡蘿蔔素對水稻的抗逆境生理活性的表現 46
4-4 多元胺與Or基因表現 49
五、參考文獻 50
六、附錄 55
附錄一、多元胺在植物體內生合成路徑 55
附錄二、類胡蘿蔔素生合成路徑 56
附錄三、RT-PCR圓葉菸草Or基因mRNA之Coding Sequence片段之RT-PCR 57
圖與表
表一、RT-PCR 引子列表 15
表二、Or基因間的序列相似度 22
表三、鹽害對水稻鮮重之單因子變異數分析(ANOVA) 25
圖一、Or基因序列比對 21
圖二、高等植物中的Or基因系統樹 23
圖三、鹽害對水稻鮮重含量影響 26
圖四、鹽害與水稻MDA含量變化 27
圖五、鹽害與清除DPPH能力 29
圖六、鹽害對水稻葉綠素含量含量影響 30
圖七、鹽害對水稻類胡蘿蔔素含量影響 31
圖八、不同鹽害濃度對於水稻葉片Or基因之RT-PCR分析 32
圖九、水稻Or基因及Ubc基因之RT-PCR結果 33
圖十、鹽害逆境下多元胺及類胡蘿蔔素相關處理後的MDA含量 36
圖十一、鹽害逆境下多元胺及類胡蘿蔔素相關處理後的清除DPPH能力 37
圖十二、鹽害逆境與多元胺及類胡蘿蔔素相關處理後的葉綠素含量 40
圖十三、鹽害逆境與多元胺及類胡蘿蔔素相關處理後的類胡蘿蔔素含量 41
圖十四、鹽害逆境與多元胺及類胡蘿蔔素相關處理後的水稻葉片Or基因之RT-PCR分析表現量 42

Ahmad N, Fazal H, Abbasi BH, Anwar S, Basir A, 2013. DPPH free radical scavenging activity and phenotypic difference in hepatoprotective plant (Silybum marianum L.). Toxicol Ind Health 29, 460-7.
Allen RD, 1995. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol 107, 1049-1 054.
Arnon DI, 1967. Photosynthetic activity of isolated chloroplasts. Physiol Rev 47, 317-58.
Arnon DI, Allen MB, Whatley FR, 1954. Photosynthesis by isolated chloroplasts. Nature 174, 394-6.
Aro EM, Virgin I, Andersson B, 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143, 113-34.
Babazadeh R, Furukawa T, Hohmann S, Furukawa K, 2014. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4, 4697.
Bai B, Su YH, Yuan J, Zhang XS, 2013. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6, 1247-60.
Bajji M, Kinet J-M, Lutts S, 2001. The use of the electrolyte leakage method for assessing cell membrane
stability as a water stress tolerance test in durum wheat. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat.
Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK, 2005. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309, 2061-4.
Bartley GE, Scolnik PA, 1995. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7, 1027-38.
Bouchereau A, Aziz A, Larher F, Martin-Tanguy J, 1999. Polyamines and environmental challenges: recent development. Plant Science Volume 140, p.103–25.
Boudsocq M, Lauriere C, 2005. Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Physiol 138, 1185-94.
Chen X, Han H, Jiang P, et al., 2011. Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant Cell Physiol 52, 909-21.
Cheng SF, Huang YP, Wu ZR, Hu CC, Hsu YH, Tsai CH, 2010. Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BMC Plant Biol 10, 286.
De Nadal E, Ammerer G, Posas F, 2011. Controlling gene expression in response to stress. Nat Rev Genet 12, 833-45.
Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K, 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus--the protective role of polyamines. Biochim Biophys Acta 1767, 272-80.
Demmig B, Winter K, Kruger A, Czygan FC, 1987. Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84, 218-24.
Farooq, Wahid, Kobayashi, Fujita, Basra, 2008. Plant drought stress: effects, mechanisms and management. Pakistan: Springer Netherlands.
Fassler JS, Gray WM, Malone CL, Tao W, Lin H, Deschenes RJ, 1997. Activated alleles of yeast SLN1 increase Mcm1-dependent reporter gene expression and diminish signaling through the Hog1 osmosensing pathway. J Biol Chem 272, 13365-71.
Finkelstein R, Reeves W, Ariizumi T, Steber C, 2008. Molecular aspects of seed dormancy. Annu Rev Plant Biol 59, 387-415.
Franceschetti M, Fornale S, Tassonia A, Zuccherelli K, Mayer MJ, Bagni N, 2004. Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161, 989-1001.
Galston AW, Sawhney RK, 1990. Polyamines in plant physiology. Plant Physiol 94, 406-10.
Han SY, Kitahata N, Sekimata K, et al., 2004. A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135, 1574-82.
Heath RL, Packer L, 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125, 189-98.
Hodges DM, Delong JM, Forney CF, Prange RK, 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604-11.
Hoekstra FA, Golovina EA, Buitink J, 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci 6, 431-8.
Hurry VM, Strand A, Tobiaeson M, Gardestrom P, Oquist G, 1995. Cold Hardening of Spring and Winter Wheat and Rape Results in Differential Effects on Growth, Carbon Metabolism, and Carbohydrate Content. Plant Physiol 109, 697-706.
Janowitz T, Kneifel H, Piotrowski M, 2003. Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett 544, 258-61.
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K, 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17, 287-91.
Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S, 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45, 712-22.
Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS, 2013. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Biochem 70, 445-54.
Koini MA, Alvey L, Allen T, et al., 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19, 408-13.
Koornneef M, Bentsink L, Hilhorst H, 2002. Seed dormancy and germination. Curr Opin Plant Biol 5, 33-6.
Krishnamurthy R, Bhagwat KA, 1989. Polyamines as Modulators of Salt Tolerance in Rice Cultivars. Plant Physiol 91, 500-4.
Kumar M, Reddy CR, Ralph PJ, 2015. Polyamines in morphogenesis and development: a promising research area in seaweeds. Front Plant Sci 6, 27.
Lafitte HR, Yongsheng G, Yan S, Li ZK, 2007. Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58, 169-75.
Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF, 2001. A novel gene mutation that confers abnormal patterns of b-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). The Plant Journal 26, 59-67.
Lindgren LO, Stalberg KG, Hoglund AS, 2003. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132, 779-85.
Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'neill J, Li L, 2008. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59, 213-23.
Lu S, Van Eck J, Zhou X, et al., 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18, 3594-605.
Nakamura H, Asami T, 2014. Target sites for chemical regulation of strigolactone signaling. Front Plant Sci 5, 623.
Neily MH, Matsukura C, Maucourt M, et al., 2011. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168, 242-52.
Nounjan N, Nghia PT, Theerakulpisut P, 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169, 596-604.
Oquist G, Chow WS, Anderson JM, 1992. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 186, 450-60.
Ougham HJ, Stoddart JL, 1986. Synthesis of heat-shock protein and acquisition of thermotolerance in high-temperature tolerant and high-temperature susceptible lines of Sorghum. Plant Science 44, 163-7.
Ouyang S, Zhu W, Hamilton J, et al., 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35, D883-7.
Peleg Z, Blumwald E, 2011. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14, 290-5.
Pottosin I, Shabala S, 2014. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5, 154.
Quinn PJ, 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 22, 128-46.
Rajam B, Rajam MV, 1996. Inhibition of polyamine biosynthesis and growth in plant pathogenic fungi in vitro. Mycopathologia 133, 95-103.
Reddy R, V. CK, M. V, 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161, 1189-202.
Rita B, Nello B, Guglielmo C, 1988. Endogenous polyamines in apple and their relationship to fruit set and fruit growth. Physiol Plant 73, 201-5.
Ruiz-Sola MA, Arbona V, Gomez-Cadenas A, Rodriguez-Concepcion M, Rodriguez-Villalon A, 2014. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis. PLoS One 9, e90765.
Sannazzaro AI, Alvarez CL, Menendez AB, Pieckenstain FL, Alberto EO, Ruiz OA, 2004. Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores. FEMS Microbiol Lett 230, 115-21.
Scoccianti V, Iacobucci M, Speranza A, Antognoni F, 2013. Over-accumulation of putrescine induced by cyclohexylamine interferes with chromium accumulation and partially restores pollen tube growth in Actinidia deliciosa. Plant Physiol Biochem 70, 424-32.
Shi H, Chan Z, 2014. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56, 114-21.
Shi H, Ye T, Chan Z, 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 71, 226-34.
Skriver K, Mundy J, 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503-12.
Sneha S, Rishi A, Chandra S, 2014. Effect of Short Term Salt Stress on Chlorophyll Content, Protein and Activities of Catalase and Ascorbate Peroxidase Enzymes in Pearl Millet. American Journal of Plant Physiology 9, 32-7.
Sperdouli I, Moustakas M, 2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169, 577-85.
Stahl W, Sies H, 2003. Antioxidant activity of carotenoids. Mol Aspects Med 24, 345-51.
Taiz L, Zeiger E, 2006. Plant Physiology. Massachusetts: Sinauer Associates Inc.
Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H, 2003. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131, 454-62.
Tonhosolo R, D'alexandri FL, De Rosso VV, et al., 2009. Carotenoid biosynthesis in intraerythrocytic stages of Plasmodium falciparum. J Biol Chem 284, 9974-85.
Torrigiani P, Bressanin D, Ruiz KB, et al., 2012. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant 146, 86-98.
Tuteja N, 2007. Mechanisms of high salinity tolerance in plants. Methods Enzymol 428, 419-38.
Vij S, Tyagi AK, 2007. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5, 361-80.
Walden R, Cordeiro A, Tiburcio AF, 1997. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113, 1009-13.
Xu J, Duan X, Yang J, Beeching JR, Zhang P, 2013. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiol 161, 1517-28.
Yamaguchi K, Takahashi Y, Berberich T, et al., 2006. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580, 6783-8.
Zhang L, Li X, Li B, et al., 2014. Role of abscisic acid (ABA) in modulating the responses of two apple rootstocks to drought stress. Pakistan Journal of Botany 46, 117-26.
Zhou X, Welsch R, Yang Y, et al., 2015. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci U S A 112, 3558-63.
Zhu JK, 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-73.
吳, 2014. 利用VIGS靜默多元胺三胺合成酶基因探討多元胺與一氧化氮對圓葉煙草(Nicotiana benthamiana)根部生長的影響: National Changhua University of EducationMaster.
侯, 2013. 利用VIGS靜默多元胺合成酶基因來探討多元胺對煙草(Nicotiana benthamiana) 生長發育的影響: National Changhua University of Education, Master.
倪, 2006. 多元胺對低溫逆境下水稻幼苗抗氧化酵素活性之影響: National Changhua University of Education, Master.
徐, 2006. 鹽分逆境對不同耐性水稻懸浮細胞多元胺生合成基因表現之影響: National ChangHua University of Education, Master.
高, 2014. 白菜之溫度馴化處理對高溫逆境恢復期的生理與多元胺含量之影響: National Changhua University of Education, Master.
許, 2009. 多元胺對鹽分逆境下水稻幼苗根部抗氧化能力之影響: National Changhua University of Education, Master.
葉, 韋, 2008. 雲林縣口湖地區土壤鹽化現象的研究. Journal of Geographical Research 48, 24

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊