跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡承佑
研究生(外文):Cheng-Yu Tsai
論文名稱:台灣國中階段幾何教科書之內容分析比較
論文名稱(外文):The study of Geometry contents at secondary school mathematics textbooks in Taiwan
指導教授:秦爾聰秦爾聰引用關係
指導教授(外文):Erh-Tsung Chin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:187
中文關鍵詞:數學教科書幾何教材情境問題與非情境問題
外文關鍵詞:mathematics textbooksgeometry instructional materialssituational problems and non-situational problems
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在探討台灣「A版本數學」、「B版本數學」與「C版本數學」三個版本於國中階段數學教科書幾何教材內容之「教材編排脈絡與內容差異」與「情境問題與非情境問題」的分析比較。其研究結果顯示:

一、在教材編排脈絡方面,「A版本數學」在幾何主題中較著重讓學生動
手做,以及在引入定理前會利用問題探索的方式讓學生可以推導出其
定理,「B版本數學」在幾何主題中細分為較多主題,每個主題與定理
皆解說詳細,讓學生在閱讀上可以更加了解每個定理,「C版本數
學」,在進到每個主題之前,皆由溫故啟思的方式讓學生可以了解其
課程間的關聯性,且在幾何主題中的引導較多為情境方式,將有助於
教師在進到每個章節時,能夠適時地提高學生的學習動機。

二、在情境問題與非情境問題得佈題呈現方式上,台灣「B版本數學」有
高達96.8%為非情境問題的佈題,而「A版本數學」也高達95.7%是
非情境問題的佈題,「C版本數學」亦有95%的佈題為非情境問題,
在8個幾何主題中,「A版本」與「C版本」則是有2個主題皆沒有情
境問題的佈題,「B版本」則是有1個主題沒有情境問題的佈題,研
究者比較三個版本的教材後發現三個版本在幾何主題的佈題方式上還
是以「非情境問題」為主。

This study aims at investigating and comparing the “compilation and content of geometry” and “contextualized and decontextualized problems” in the three major junior high school mathematics textbooks in Taiwan.The results show as follows:
1. As the compilation for teaching materials, edition A focuses on asking students to DIY on geometry instructional materials and has them get the theorem by exploring problems. Edition B focuses on dividing more topics with fully explanation and makes students understand every theorem. Edition C is to make students understand the connection between lessons by reviewing them before starting the new topic. Also, using the contextualized ways is able to enhance the students’ learning motivation before teaching.

2. As posing problems for contextualized and decontextualized problems, edition B contains 96.8 % decontextualized problems on posing problems and edition B 95.7 %. Edition C is also up to 95%. Among eight geometry topics, edition A and C contain no contextualized problems on posing problems in two topics. And edition B contains one topic without contextualized questions. The comparisons show that they still prefer contextualized questions on posing problems for geometry topics among three different editions.

目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 4
第三節 名詞釋義 4
第四節 研究範圍與限制 5

第二章 文獻探討 6
第一節 幾何認知發展理論 6
第二節 探討台灣九年一貫數學幾何課程綱要 14
第三節 教科書相關文獻分析 19

第三章 研究方法 23
第一節 研究方法與研究架構 23
第二節 研究對象 24
第三節 類目建構與資料處理 26
第四節 研究流程 30

第四章 研究結果與討論 32
第一節 台灣教科書幾何主題內容中,其編排內容及特色 32
第二節 情境問題與非情境問題之分析比較 167

第五章 結論與建議 175
第一節 結論 175
第二節 建議 176
參考文獻 179

表目錄
表2-1-1 Piaget認知發展階段論 6
表3-2-1 綜合三個版本7~9年級幾何單元 25
表3-3-1 評分員互相同意度與信度一欄表 29

圖目錄
圖3-3-1 資料來源:取自翰林出版社第五冊(2013,頁37) 26
圖3-3-2 資料來源:取自翰林出版社第五冊(2013,頁41) 27
圖3-3-3 資料來源:取自南一出版社第三冊(2013,頁98) 27
圖3-3-4 資料來源:取自南一出版社第三冊(2013,頁95) 27
圖3-4-1 研究流程圖 31
圖4-1-1 A版本「畢氏定理」主題架構 32
圖4-1-2 B版本「畢氏定理」主題架構 34
圖4-1-3 C版本「畢氏定理」主題架構 35
圖4-1-4 三個版本之「畢氏定理」主題架構 36
圖4-1-5 A版本「幾何圖形與尺規作圖」主題架構 37
圖4-1-6 B版本「幾何圖形與尺規作圖」主題架構 41
圖4-1-7 C版本「幾何圖形與尺規作圖」主題架構 44
圖4-1-8 三個版本之「幾何圖形與尺規作圖」主題架構 47
圖4-1-9 A版本「三角形的基本性質」主題架構 51
圖4-1-10 B版本「三角形的基本性質」主題架構 61
圖4-1-11 C版本「三角形的基本性質」主題架構 68
圖4-1-12 三個版本之「三角形的基本性質」主題架構 76
圖4-1-13 A版本「平形與四邊形」主題架構 79
圖4-1-14 B版本「平形與四邊形」主題架構 86
圖4-1-15 C版本「平形與四邊形」主題架構 93
圖4-1-16 三個版本之「平形與四邊形」主題架構 99
圖4-1-17 A版本「相似形」主題架構 101
圖4-1-18 B版本「相似形」主題架構 106
圖4-1-19 C版本「相似形」主題架構 110
圖4-1-20 三個版本之「相似形」主題架構 113
圖4-1-21 A版本「圓形」主題架構 116
圖4-1-22 B版本「圓形」主題架構 123
圖4-1-23 C版本「圓形」主題架構 129
圖4-1-24 三個版本之「圓形」主題架構 135
圖4-1-25 A版本「幾何與推理」主題架構 137
圖4-1-26 B版本「幾何與推理」主題架構 143
圖4-1-27 C版本「幾何與推理」主題架構 149
圖4-1-28 三個版本之「幾何與推理」主題架構 155
圖4-1-29 A版本「立體圖形」主題架構 157
圖4-1-30 B版本「立體圖形」主題架構 160
圖4-1-31 C版本「立體圖形」主題架構 163
圖4-1-32 三個版本之「立體圖形」主題架構 165

附錄次
附錄1 台灣九年一貫數學課程領域幾何階段之分年細目表(8年級)184
附錄2 台灣九年一貫數學課程領域幾何階段之分年細目表(9年級)186

中文部份
王文科、王智弘(2012)。教育研究法。台北市:五南。
王石番(1996)。傳播內容分析法-理論與實證。台北:幼獅。
尤欣涵(2010)。台灣、美國與新加坡中學階段幾何教材內容之分析比較-以三角形為例。嘉義大學數學教育研究所碩士論文,未出版,嘉義。
左台益、梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關性研究。師大學報:科學教育類,46(1-2),1-20。
左台益(2002)。van Hiele模式之國中幾何教材設計。中等教育,53(3),44-53。
林碧珍(2003)。生活情境中的數學,新竹縣教育研究集刊,3。
林碧珍、蔡文煥(2005)。TIMSS 2003 臺灣國小四年級學生的數學成就及其相關因素之探討。科學教育月刊,285,2-38。
林鴻哲(2013)。台灣、中國大陸、新加坡國中幾何教材內容之比較。嘉義大學數學教育研究所碩士論文,未出版,嘉義。
周珮儀、鄭明長(2008)。教科書研究方法論之探究。課程與教學季刊,11(1),193-222。
南一出版社(2013)。國中數學教師手冊第三冊。台南:南一書局。
南一出版社(2014)。國中數學教師手冊第四冊。台南:南一書局。
南一出版社(2013)。國中數學教師手冊第五冊。台南:南一書局。
南一出版社(2014)。國中數學教師手冊第六冊。台南:南一書局。
郭生玉(2012)。心理與教育研究法。台北:精華。
康軒文教事業(2013)。國中數學課本第三冊。台北:康軒文教事業。
康軒文教事業(2014)。國中數學課本第四冊。台北:康軒文教事業。
康軒文教事業(2013)。國中數學課本第五冊。台北:康軒文教事業。
康軒文教事業(2014)。國中數學課本第六冊。台北:康軒文教事業。
教育部(2003)。國民中小學九年一貫課程綱要。台北:教育部。
教育部(2008)。國民中小學九年一貫課程綱要。台北:教育部。
張英傑、周菊美譯(2005)。中小學數學科教材教法(原作者:John A. Van De Walle)。台北:五南出版社。
張春興(2009)。教育心理學。台北:東華書局。
游自達、林宜誠、林原宏、洪賢松、陳兆君、蔡秋菊(2007)。九年一貫課程之教科書總評鑑總結報告:設計理念、能力指標與統整性—數學領域教科書評鑑報告。台北:中華民國課程與教學學會。
楊孟麗、謝水南譯(2003)。教育研究法:研究設計實務(原作者: Fraenkel, J. R. &; Wallen, N. E.(2000))。台北:五南出版社。
楊國揚、王立心(2010)。中國大陸教科書及學術圖書出版制度。台北:國家教育研究院。
楊國揚(2011)。我國教科書編審制度之演進與發展。教師天地,171(4),58-62。
楊德清、陳仁輝(2010)。臺灣、美國和新加坡七年級代數教材之比較研究。科學教育學刊,18(1),43-61。
楊德清、陳仁輝(2011)。臺灣、美國和新加坡三個七年級代數教科書發展學生數學能力方式之研究。科學教育學刊,19(1),39-67。
歐用生(1997)。教育研究法。台北:師大書苑。
鄭世仁(1992)。揭開「教科書」的面紗。國立教育資料館館訊,1~7。
鄭婷芸(2011)。台灣、美國與新加坡國中階段幾何教材內容之分析比較。嘉義大學數學教育研究所碩士論文,未出版,嘉義。
翰林出版社(2013)。國中數學課本第三冊。台南:翰林出版社。
翰林出版社(2014)。國中數學課本第四冊。台南:翰林出版社。
翰林出版社(2013)。國中數學課本第五冊。台南:翰林出版社。
翰林出版社(2014)。國中數學課本第六冊。台南:翰林出版社。
藍順德(2002)。九年一貫課程教科書的審定與選用。中等教育,53(3),4-17。
藍順德(2006)。教科書政策與制度。台北:五南出版社。
鍾靜(2005)。論數學課程近十年來之變革。教育研究月刊,133,124-134。

英文部份
Brown, J. S., Collins, A., &; Duguid, P. (1989). Situated cognition and the culture oflearning. Educational Researcher, 18, 32-41.
Chambliss, M.J., Calfee, R. C. (1999). Textbooks for learning. London: Blackwell.
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D.A.Grouws (Ed.), Handbook of reasoning on mathematics teaching and learning.(pp.420-464). New York, NY: Macmillan.
Crowley, M.L. (1987). The van Hiele model of the development of geometric thought.In M. M. Lindquist (Ed.), Learning and teaching geometry, (pp. 1-16).Reston,
VA: National Council of Teacher of Mathematics.
Fan, L. &; Zhu, Y. (2007) . Representation of problem-solving procedures: A comparative look at China, Singapore and US mathematics textbooks. Educational Studies in Mathematics , 66, 61-75.
Fuys, D., Geddes, D., &; Tischler, R. (1988). The van hiele model of thinking in geometry among adolescents. Reston, VA: The National Council of Teachers of Mathematics, Inc.
Grouws, D. A., Smith, M. S., &; Sztajn, P. (2004). The preparation and teaching practice of U.S. Mathematics teachers: Grades 4 and 8, In P. Kloosterman &; F. Lester (Eds.), The Progress: Results and interpretations , 221-269, Reston, VA: NCTM.
Huang, R. &; Cai, J. (2011). Pedagogical representations to teach linear relations in Chinese and U.S. classrooms: Parallel or hierarchical? Journal of Mathematical Behavior, 30(2), 149-165.
Lesh, R., &; Lamon, S. J. (Eds.) (1992). Assessment of authentic performance in school mathematics. Washinton, DC.: American Association for the Advancement of Science.
National Council of Teachers of Mathematics (NCTM)(2000). Principles and standards for school mathematics. Reston, VA:The Council.
Piaget, J., Inhelder, B., &; Szeminska, A(1960).The Child’s Conception of geometry. London: Rouledge &; Kegan Paul.
Westbury, I. (1990). Textbooks, textbook publishers, and the quality of schooling. In D. L. Elliott &; A. Woodward. (Eds.). Textbooks and schooling in The United States, 1-22. Chicago, Ill : NSSE.
Zhu, Y. &; Fan, L. (2006).Focus on the representation of problem types in intended curriculum:A Comparison of Selected Mathematics Textbooks from Mainland China and the United States.International Journal of Science and Mathematics Education, 4, 609-626.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top