(18.210.12.229) 您好!臺灣時間:2021/03/03 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳慶偉
研究生(外文):Wu Ching-Wei
論文名稱:複迴歸建模分析法於中心加工機軸向熱誤差補償之研究
論文名稱(外文):Study of Axial Thermal Error Compensation for Machine Center by a Multiple-Regression Modeling Analysis Method
指導教授:蕭瑛星張錦鋒
指導教授(外文):Shiao Ying-ShingChang Ching-Feng
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:109
中文關鍵詞:熱誤差補償熱誤差建模複迴歸分析
外文關鍵詞:Thermal Error CompensationThermal Error ModelingMultivariable Regression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高速加工技術已成為工業先進國家之金屬加工業設備必備條件,而如何
克服熱效應造成熱誤差量與改善,其軟體補償的技術已成一熱門的研究課
題。目前的工具機廠對於高精度需求的機型,大部分以裝置光學尺來回授位
置訊號,如此一來可以解決滾珠螺桿的熱變形問題,但也增加了工具機的成
本。因此,近年來對於透過溫度來預測工具機熱誤差的研究也越來越多,因
為透過補償熱誤差所帶來的經濟效益會比裝置光學尺還佳,如此一來不僅能
提升產品在市場上的位階,也更能用較少的成本來參與市場競爭。
近年來關於熱補償所做的研究,並未考量工作臺與光學尺的變形。而本
論文提出新的熱誤差補償方法,使用雙雷射量測系統,量測工具機重複定位
誤差,以計算工作臺與光學尺之伸長量,並透過熱影像儀來確認熱源的位置
來裝置溫度感測器,並將傳動零件即時溫度與監測點溫度變量一起作為建立
迴歸模型的輸入變數,同時量測軸向重複定位誤差作為迴歸模型的輸出。為
了選出最佳的預測變數組合,透過變數相關係數計算來排除多元共線的問
題,再以判定係數R2 與均方誤差作為最佳組合索引的指標,找出最佳的預測
變數組合。實測結果得知,三軸的軸向熱誤差最多可得到80.93%的改善,與
其他現行方法比較有極大之改善。
High Speed Machining (HSM) technology has become the most important application in the metal cutting industry. The thermal error is the most important issue in high speed machining. Linear encoders are applied to reduce the ball
screw thermal deformation problem in high precision metal cutting, however, this approach increases the production cost. Most current researches are focused on thermal error prediction using temperature data. Thermal error ompensation
produces better cost ratio compared to the linear encoder and also improves the product quality.
Worktable and linear encoder deformation was not considered in the present thermal compensation research method. A new technique is developed in this work
to compensate for thermal errors. Two laser measurement systems are applied to acquire worktable and linear encoder thermal expansion. The heat sources are identified using thermal cameras and temperature sensors. The temperature sensors are applied to detect the real time temperature. A mathematical model is built using multivariable regression analysis based on the sensed temperature variation
and the thermal expansion. In order to select the best combination of predictive variable data, the multi-collinear problem is obviated by calculating the correlation
coefficient. The coefficient of determination (R2) and Mean Square Error (MSE) are determined as optimal indicators of a composite index that identifies the best combination of predictive variables. The experimental results show that the three axial thermal error can be improved by 80.93%.
中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 x

第一章 緒論……………………………………………… 1
1.1 研究背景與動機……………………………………………………... 1
1.2 本論文之貢獻………..……………………………………………... 6
1.3 論文架構……………………………………………………………..7
第二章 工具機進給系統熱行為探討與分析…………………………………..9
2.1 工具機熱誤差補償方法之文獻探討…………………………….. 9
2.2 滾珠螺桿熱傳導分析…………………………………………….. 14
2.3 溫度感測器位置選擇……………………………………………… 19
2.4 工具機熱模型建立………………………………………………… 24
2.5 本章結論…………………………………………………………… 27
第三章 軸向補償系統建立…………………………………………………… 28
3.1 系統架構…………………………………………………………… 28
3.2 溫度量測模組設計………………………………………………… 29
3.3 軸向補償系統設計………………………………………………… 32
3.4 雷射量測系統建立………………………………………………… 35
3.5 本章結論…………………………………………………………… 52
第四章 實測結果統計與分析…………………………………………………. 53
4.1 變數相關係數分析結果…………………………………………… 53
4.2 變數組合最佳化分析結果………………………………………… 57
4.3 建模分析結果………………………………………………… 64
4.4 本章結論…………………………………………………………… 80
第五章 補償結果與討論………………………………………………………. 81
5.1 實驗結果與分析..…………………………………………………… 81
5.2 本章結論………..…………………………………………………… 96
第六章 結論與未來研究方向…………………………………………………97
6.1 結論……………..…………………………………………………… 97
6.2 未來研究方向…..………..…………………..……………………… 98

圖目錄
圖1.1 X 軸於進給速度10 m/min 進行暖機2 小時的量測結果 3
圖2.1 溫度與位移量測系統 12
圖2.2 微觀固體之一維熱傳導示意圖 14
圖2.3 平板表面熱對流示意圖 15
圖2.4 中空滾珠螺桿熱模型圖 17
圖2.5 後軸承座的熱影像 20
圖2.6 前軸承座的熱影像 20
圖2.7 滑塊與工作臺銜接處的熱影像 21
圖2.8 螺帽座溫度飽和後的熱影像 21
圖2.9 X 軸溫度感測器埋測的位置圖 22
圖2.10 溫度感器安置位置圖 23
圖2.11 變數相關係數意義圖 27
圖3.1 軸向補償的流程圖 29
圖3.2 溫度與電阻的轉換曲線圖 29
圖3.3 PT100 溫度轉換電路 30
圖3.4 儀表放大器電路 31
圖3.5 ADG506A 16 通道A/D 多工器電路圖 33
圖3.6 DAC7614 D/A converter 電路圖 34
圖3.7 DAC7614 輸出的四倍放大電路圖 34
圖3.8 定位與溫度變化之量測平臺 35
圖3.9 X 軸重複定位誤差量測流程圖 37
圖3.10 X 軸重複定位誤差量測示意圖 38
圖3.11 重複定位誤差量測示意圖 39
圖3.12 X 軸的雙雷射系統量測圖 40
圖3.13 雙雷射量測系統於X 軸位置0 mm 的重複定位誤差量測結果 41
圖3.14 雙雷射量測系統於X 軸位置400 mm 的重複定位誤差量測結果 41
圖3.15 雙雷射量測系統於X 軸位置800 mm 的重複定位誤差量測結果 42
圖3.16 雙雷射系統在不同位置的重複定位誤差相減結果 42
圖3.17 工作臺溫度量測結果 43
圖3.18 工作臺與光學尺的變形圖 45
圖3.19 X 軸工作臺與光學尺的變形細部分析圖 46
圖3.20 X 軸雙雷射量測系統的工作臺變形量測結果 47
圖3.21 X 軸雙雷射量測系統的光學尺變形量測結果 48
圖3.22 補償位置示意圖 49
圖3.23 軸向前端透視圖 50
圖3.24 編碼器系統雷射量測示意圖 52
圖4.1 光學尺系統的X 軸溫度量測結果 67
圖4.2 光學尺系統的X 軸單邊工作臺變形預測結果 67
圖4.3 光學尺系統的X 軸單邊光學尺變形預測結果 68
圖4.4 編碼器系統的X 軸溫度量測結果 69
圖4.5 編碼器系統的X 軸單邊工作臺變形預測結果 70
圖4.6 編碼器系統的X 軸位於位置0 mm 的螺桿變形預測結果 70
圖4.7 編碼器系統的X 軸位於位置400 mm 的螺桿變形預測結果 71
圖4.8 編碼器系統的X 軸位於位置800 mm 的螺桿變形預測結果 71
圖4.9 Y 軸光學尺系統的位置0 mm 重複定位誤差預測圖 72
圖4.10 Y 軸光學尺系統的位置250 mm 重複定位誤差預測圖 72
圖4.11 Y 軸光學尺系統的位置500 mm 重複定位誤差預測圖 73
圖4.12 Y 軸編碼器系統的位置0 mm 重複定位誤差預測圖 73
圖4.13 Y 軸編碼器系統的位置250 mm 重複定位誤差預測圖 74
圖4.14 Y 軸編碼器系統的位置500 mm 重複定位誤差預測圖 74
圖4.15 Z 軸光學尺系統的位置0 mm 重複定位誤差預測圖 75
圖4.16 Z 軸光學尺系統的位置250 mm 重複定位誤差預測圖 75
圖4.17 Z 軸光學尺系統的位置500 mm 重複定位誤差預測圖 76
圖4.18 Z 軸編碼器系統的位置0 mm 重複定位誤差預測圖 76
圖4.19 Z 軸編碼器系統的位置250 mm 重複定位誤差預測圖 77
圖4.20 Z 軸編碼器系統的位置500 mm 重複定位誤差預測圖 77
圖5.1 Y 軸的即時補償情形 82
圖5.2 溫度模組的輸出電壓變化量測 83
圖5.3 移動平均濾波器即時補償響應 84
圖5.4 X 軸光學尺系統的位置0 mm 補償結果 86
圖5.5 X 軸光學尺系統的位置800 mm 補償結果 87
圖5.6 X 軸編碼器系統的位置0 mm 補償結果 87
圖5.7 X 軸編碼器系統的位置800 mm 補償結果 88
圖5.8 Y 軸光學尺系統的位置0 mm 補償結果 88
圖5.9 Y 軸光學尺系統的位置250 mm 補償結果 89
圖5.10 Y 軸光學尺系統的位置500 mm 補償結果 90
圖5.11 Y 軸編碼器系統的位置0 mm 補償結果 90
圖5.12 Y 軸編碼器系統的位置250 mm 補償結果 91
圖5.13 Y 軸編碼器系統的位置500 mm 補償結果 91
圖5.14 Z 軸光學尺系統的位置0 mm 補償結果 92
圖5.15 Z 軸光學尺系統的位置250 mm 補償結果 93
圖5.16 Z 軸光學尺系統的位置500 mm 補償結果 93
圖5.17 Z 軸編碼器系統的位置0 mm 補償結果 94
圖5.18 Z 軸編碼器系統的位置250 mm 補償結果 94
圖5.19 Z 軸編碼器系統的位置500 mm 補償結果 95


表目錄
表2.1 溫升資料表 22
表4.1 X 軸編碼器系統的各溫度間相關係數計算表 54
表4.2 X 軸光學尺系統的各溫度間相關係數計算表 54
表4.3 Y 軸編碼器系統的各溫度間相關係數計算表 54
表4.4 Y 軸光學尺系統的各溫度間相關係數計算表 55
表4.5 Z 軸編碼器系統的各溫度間相關係數計算表 55
表4.6 Z 軸光學尺系統的各溫度間相關係數 55
表4.7 高相關係數之變數統計表 56
表4.8 X 軸光學尺系統的工作臺與光學尺各數量變數之最佳組合分析表 58
表4.9 X 軸編碼器系統的工作臺熱變形之各數量變數最佳組合分析表 59
表4.10 X 軸編碼器系統的滾珠螺桿熱變形之各數量變數最佳組合分析表 59
表4.11 Y 軸光學尺系統的各數量變數之最佳組合分析表 60
表4.12 Y 軸編碼器系統的各數量變數之最佳組合分析表 60
表4.13 Z 軸光學尺系統的各數量變數之最佳組合分析表 61
表4.14 Z 軸編碼器系統的各數量變數之最佳組合分析表 61
表4.15 最佳化變數組合分析結果 63
表4.16 X 軸建模資料分析表 64
表4.17 Y 軸建模資料分析表 65
表4.18 Z 軸建模資料分析表 65
表4.19 各軸光學尺系統熱誤差預測結果 78
表4.20 各軸編碼器系統熱誤差模型預測結果 79
表4.21 各軸光學尺系統與編碼器系統的預測結果比較表 80
表5.1 光學尺系統差補各軸熱誤償結果 85
表5.2 編碼器系統補償各軸熱誤差結果 85
表5.3 各軸光學尺系統與編碼器系統的補償結果比較表 96


[1] J. Ni, “CNC machine accuracy enhancement through real-time error compensation,”
Journal of Manufacturing Science and Engineering, Vol. 119, pp. 717-725, 1997.
[2] M. Weck, P. Mckeown, R. Bonse, and U. Herbst, “Reduction and compensation of
thermal errors in machine tools,” Annals of the CIRP, Vol. 44, pp. 589-598, 1995.
[3] M. Ninomiya and K. Miyaguchi, "Recent technical trends in ball screws," NSK
Technical Journal Motion Control, Vol. 664, pp. 1-3, June 1998.
[4] NSK nut cooling ball screw 技術資料,2014 年8 月取自: http://www.nskeurope.com/
[5] Z. Z. Xu, X. J. Liu, H. K. Kim, J. H. Shin, and S. K. Lyu, "Thermal error forecast and
performance evaluation for an air-cooling ball screw system," International Journal of
Machine Tools &; Manufacture, Vol. 51, pp. 605-611, 2011.
[6] Z. Z. Xu, X. J. Liu, C. H. Choi, and S. K. Lyu, "A study on improvement of ball screw
system positioning error with liquid-cooling," International Journal of Precision
Engineering and Manufacturing, Vol. 13, No. 12, pp. 2173-2181, 2012.
[7] Z. Z. Xu, X. J. Liu, C. H. Choi, and S. K. Lyu, "A novel high speed high precision ball
screw," International Journal of Precision Engineering and Manufacturing, Vol. 14, No.
1, pp. 165-167, 2013.
[8] PMI hollow cooling system 技術資料,2014 年8 月取自: http://www.pmi-amt.com/
[9] Z. Z. Xu, X. J. Liu, and S. K. Lyu, "Study on thermal behavior analysis of nut shaft air
cooling ball screw for high-precision feed drive," International Journal of Precision
Engineering and Manufacturing, Vol. 15, Issue 1, pp. 123-128, January 2014.
[10] J. Takabi and M. M. Khonsari, "Experimental testing and thermal analysis of ball
bearings," Tribology International, Vol. 60, pp. 93-103, 2013.
[11] Y. Kang, "Stiffness determination of angular-contact ball bearings by using neural
network," Tribology International, Vol. 39, pp. 461-469, 2006.
101
[12] S. Isert, "Heat transfer through a rotating ball bearing at low angular velocities,"
Master's thesis, Mechanical and Aerospace Engineering, Utah State University, Logan,
Utah, 2011.
[13] M. A. Muhammed, "The effect of heat generated by friction in the ball-screw-nut
system on the precision of high speed machine," Journal of AL-TAQANI, Vol. 24,
Issue 6, pp. 112-123, 2011.
[14] A. S. Kushw, A. B. Wankhand, D. E. Mahajan, and D.K. Thakur, "Analysis of the ball
bearing considering the thermal (temperature) and friction effects," National
conference on Emerging Trends in Engineering &; Technology, Rajasthan, India, pp.
115-120, March 2012.
[15] N. Balamurugan and C. Bhagyanathan, "Analysis and investigation on thermal
behaviours of ball bearing in high speed spindle," International Journal of Innovative
Science and Modern Engineering, Vol. 2, Issue 4, pp. 16-20, March 2014.
[16] I. Alejandre and M. Artes, "Real thermal coefficient in optical linear encoders,"
Experimental Technique, Vol. 28, pp. 18-22, April 2004.
[17] I. Alejandre and M. Artes, "Thermal non-linear behaviours in optical linear encoders,"
International Journal of Machine Tools and Manufacture, Vol. 28, pp. 1319-1325, July
2006.
[18] I. Alejandre and M. Artes, "Machine tool errors caused by optical linear encoders,"
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, Vol. 218, No. 1, pp. 113-122, January 2004.
[19] J. J. Kim, Y. H. Jeong, and D. W. Cho, "Thermal behavior of a machine tool equipped
with linear motors," International Journal of Machine Tools and Manufacture, Vol. 44,
Issue 7-8, pp. 749-758, June 2004.
102
[20] S. M. Vilar, "Analyses of linear encoder application (glass scale) on quality of
machining centre," Mechanical Engineering Wroclaw University of Technology, 2010.
[21] Y. Lu and M. N. Islam, "An investigation of thermal behaviour of a machine tool on
the dimensional accuracy of parts," International Journal of Mechanical Engineering
and Mechatronics, Vol. 1, Issue 2, pp. 122-129, 2012.
[22] A. C. Okafor and Y. M. Ertekin, "Derivation of machine tool error models and error
compensation procedure for three axes vertical machining center using rigid body
kinematics," International Journal of Machine Tools and Manufacture, Vol. 40, Issue 8,
pp. 1199-1213, June 2000.
[23] J. M. Fines and A. Agahb, "Machine tool positioning error compensation using
artificial neural networks," Engineering Applications of Artificial Intelligence, Vol. 21,
Issue 7, pp. 1013-1026, October 2008.
[24] U. Heisel, G. Koscsak, and T. Stehle, "Thermography-based investigation into
thermally induced positioning errors of feed drives by example of a ball screw," CIRP
Annals - Manufacturing Technology, Vol. 55, Issue 1, pp. 423-426, 2006.
[25] 安田工業株式會社熱變形穩定系統,2014 年8 月取自:http://www.yasda.co.jp/
[26] Y. Kakino and K. Mori, "A study of compensation of thermal displacement of the ball
screw in NC machine tools," Journal of the Japan Society for Precision Engineering,
Vol. 54, No. 9, pp. 1753-1758, 1988.
[27] D. S. Lee, J. Y. Choi, and D. H. Choi, "ICA based thermal source extraction and
thermal distortion compensation method for a machine tool," International Journal of
Machine Tools and Manufacture, Vol. 43, Issue 6, pp. 589-597, May 2003.
[28] P. C. Tseng and J. L. Ho, "A study of high-precision CNC lathe thermal errors and
compensation," The International Journal of Advanced Manufacturing Technology,
Vol. 19, Issue 11, pp. 850-858, June 2002.
103
[29] Z. C. Lin and J. S. Chang, "The building of spindle thermal displacement model of
high speed machine center," The International Journal of Advanced Manufacturing
Technology, Vol. 34, Issue 5-6, pp. 556-566, September 2007.
[30] J. S. Chen, J. Yuan, and J. Ni, "Thermal error modeling for real-time error
compensation," The International Journal of Advanced Manufacturing Technology,
Vol. 12, Issue 4, pp. 266-275, July 1996.
[31] S. C. Huang, "Analysis of a model to forecast thermal deformation of ball screw feed
drive systems," International Journal of Machine Tools and Manufacture, Vol. 35,
Issue 8, pp. 1099-1104, August 1995.
[32] Z. C. Du, J. G. Yang, Z. Q. Yao, and B. Y. Xue, "Modeling approach of regression
orthogonal experiment design for the thermal error compensation of a CNC turning
center," Journal of Materials Processing Technology, Vol. 129, Issue 1-3, pp. 619-623,
October 2002.
[33] J. H. Lee and S. H. Yang, "Statistical optimization and assessment of a thermal error
model for CNC machine tools," International Journal of Machine Tools and
Manufacture, Vol. 42, Issue 1, pp. 147-155, January 2002.
[34] J. G. Yang, Y. Q. Ren, G. L. Liu, H. T. Zhao, X. L. Dou, W. Z. Chen, and S. W. He,
"Testing, variable selecting and modeling of thermal errors on an INDEX-G200
turning center," The International Journal of Advanced Manufacturing Technology,
Vol. 26, Issue 7-8 , pp. 814-818, October 2005.
[35] R. Zhu, S. Dai, Y. Zhu, X. Wu, and Y. Guo, "Thermal error analysis and error
prediction modeling on a machine tool," Industrial Engineering and Engineering
Management, Singapore, pp. 2056-2060, December 2008.
[36] M. Mares, O. Horejs, J. Hornych, and J. Smolik, "Robustness and portability of
machine tool thermal error compensation model based on control of participating
thermal sources," Journal of Machine Engineering, Vol. 13, No. 1, pp. 24-36, 2013.
104
[37] S. S. Honnungar, V. P. Raja, and M. Nataraj, "Statistical-based analysis of thermally
induced errors in computer numerical control (CNC) machining center," Frontiers in
Aerospace Engineering, Vol. 2, Issue 1, February 2013.
[38] V. P. Raja, S. R. Babu, D. V. Krishna, J. Kanchana, and P. R. Thyla, "A novel approach
for thermal error modeling in CNC turning centre," International Journal of
Mechanical &; Mechatronics Engineering, Vol. 14, No. 2, pp. 77-84, April 2014.
[39] M. Hattori, H. Noguchi, S. Ito, T. Suto, and H. Inoue, "Estimation of
thermal-deformation in machine tools using neural network technique," Journal of
Materials Processing Technology, Vol. 56, Issue 1-4, pp. 765-772, January 1996.
[40] S. C. Veldhuis and M. A. Elbestawi, "A strategy for the compensations of errors in
five-axis machining," CIRP Annals - Manufacturing Technology, Vol. 44, Issue 1 pp.
373-377, January 1995.
[41] H. Wu, H. Zhang, Q. Guo, X. Wang, and J. Yang, "Thermal error optimization
modeling and real-time compensation on a CNC turning center," Journal of Materials
Processing Technology, Vol. 207, pp. 172-179, December 2008.
[42] Y. Huang, J. Zhang, X. Li, and L. Tian, "Thermal error modeling by integrating GA
and BP algorithms for the high-speed spindle," The International Journal of Advanced
Manufacturing Technology, Vol. 71, Issue 9-12, pp. 1669-1675, April 2014.
[43] S. Yang, J. Yuan, and J. Ni, "The improvement of thermal error modeling and
compensation on machine tools by cmac neural network," International Journal of
Machine Tools and Manufacture, Vol. 36, Issue 4, pp. 527-537, April 1996.
[44] J. W. Li, W. J. Zhang, G. S. Yang, S. D. Tu, and X. B. Chen, "Thermal-error modeling
for complex physical systems: the-state-of-arts review," The International Journal of
Advanced Manufacturing Technology, Vol. 42, Issue 1-2, pp. 168-179, May 2009.
105
[45] C. Jin, B. Wu, and Y. Hu, "Wavelet neural network based on NARMA-L2 model for
prediction of thermal characteristics in a feed system," Chinese Journal of Mechanical
Engineering, Vol. 24, No. 1, pp. 33-41, 2011.
[46] Q. Guo ,J. Yang, and H. Wu, " Application of ACO-BPN to thermal error modeling of
NC machine tool," The International Journal of Advanced Manufacturing Technology,
Vol. 50, Issue 5-8, pp. 667-675, September 2010.
[47] Y. Kang, C. W. Chang, M. H. Chu, Y. P. Chang, and Y. P. Wang, "Estimation of
thermal deformation in machine tools using the hybrid autoregressive
moving-average-neural network model," Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, Vol. 220, No. 8, pp.
1317-1323, May 2006.
[48] P. Vanherck, J. Dehaes, and D. Nuttin, "Compensation of thermal deformations in
machine tools with neural nets," Computers in Industry, Vol. 33, Issue 1, pp. 119-125,
August 1997.
[49] C. D. Mize and J. C. Ziegert, "Neural network thermal error compensation of a
machining center," Precision Engineering, Vol. 24, Issue 4, pp. 338-346, October
2000.
[50] H. Yang and J. Ni, "Dynamic neural network modeling for nonlinear, no stationary
machine tool thermally induced error," International Journal of Machine Tools and
Manufacture, Vol. 45, Issue 4-5, pp. 455-465, April 2005.
[51] Y. Kang, C. W. Chang, Y. Huang, C. L. Hsu, and I. F. Nieh, "Modification of a neural
network utilizing hybrid filters for the compensation of thermal deformation in
machine tools," International Journal of Machine Tools and Manufacture, Vol. 47,
Issue 2, pp. 376-387, February 2007.
106
[52] J. M. Fines and A. Agah, "Machine tool positioning error compensation using artificial
neural networks," Engineering Applications of Artificial Intelligence, Vol. 21, Issue 7,
pp. 1013-1026, October 2008.
[53] J. H. Shen and J. G. Yang, "Application of partial least squares neural network in
thermal error modeling for CNC machine tool," Manufacturing Automation
Technology, Vol. 392-394, pp. 30-34, October 2008.
[54] V. K. Dhar, A. K. Tickoo1, S. K. Kaul, R. Koul, and B. P. Dubey, "Artificial neural
network-based error compensation procedure for low-cost encoders," Measurement
Science and Technology, Vol. 21, No. 1, pp. 15112-15120, November 2009.
[55] R. Liang, W. Ye, H. H. Zhang, and Q. Yang, "The thermal error optimization models
for CNC machine tools," The International Journal of Advanced Manufacturing
Technology, Vol. 63, Issue 9-12, pp. 1167-1176, December 2012.
[56] H. Zeng, Y. Sun, and X. Zeng, "A new approach of error compensation on nc
machining based on memetic computation," TELKOMNIKA Indonesian Journal of
Electrical Engineering, Vol. 11, No. 4, pp. 2148-2156, April 2013.
[57] S. K. Kim and D. W. Cho, "Real-time estimation of temperature distribution in a
ball-screw system," International Journal of Machine Tools and Manufacture, Vol. 37,
Issue 4, pp. 451-464, April 1997.
[58] J. Jedrzejewski, W. Modrzycki, Z. Kowal, W. Kwasny, and Z. Winiarski, "Precise
modelling of HSC machine tool thermal behaviour,'' Journal of Achievements in
Materials and Manufacturing Engineering, Vol. 24, Issue 1, pp. 245-252, 2007.
[59] E. Creighton, A. Honegger, A. Tulsian, and D. Mukhopadhyay, " Analysis of thermal
errors in a high-speed micro-milling spindle,'' International Journal of Machine Tools
and Manufacture, Vol. 50, Issue 4, pp. 386-393, April 2010.
107
[60] N. S. Mian, S. Fletcher, A. P. Longstaff, and A. Myers, "Efficient thermal error
prediction in a machine tool using finite element analysis," Measurement Science and
Technology, Vol. 22, No. 8, pp. 368-372, July 2011.
[61] N. S. Mian, S. Fletcher, A. P. Longstaff, and A. Myers, "Efficient estimation by FEA
of machine tool distortion due to environmental temperature perturbations," Precision
Engineering, Vol. 37, Issue 2, pp. 372-379, April 2013.
[62] K. C. Wang, P. C. Tseng, and K. M. Lin, "Thermal error modeling of a machining
center using grey system theory and adaptive network-based fuzzy inference system,"
IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, pp.1-6,
June 2006.
[63] Y. X. Li, J. G. Yang, T. Gelvis, and Y. Y. Li, "Optimization of measuring points for
machine tool thermal error based on grey system theory," The International Journal of
Advanced Manufacturing Technology, Vol. 35, Issue 7-8, pp. 745-750, January 2008.
[64] J. Y. Yan and J. G. Yang, "Application of synthetic grey correlation theory on thermal
point optimization for machine tool thermal error compensation," The International
Journal of Advanced Manufacturing Technology, Vol. 43, Issue 11-12, pp. 1124-1132,
August 2009.
[65] Y. Zhang, J. Yang, and H. Jiang, "Machine tool thermal error modeling and prediction
by grey neural network," The International Journal of Advanced Manufacturing
Technology, Vol. 59, Issue 9-12, pp. 1065-1072, April 2012.
[66] H. Zhao, J. Yang, and J. Shen, "Simulation of thermal behavior of a CNC machine tool
spindle," International Journal of Machine Tools and Manufacture, Vol. 47, Issue 6, pp.
1003-1010, May 2007.
[67] M. S. Lewis-Beck, Regression Analysis (International Handbook of Quantitative
Applications in the Social Sciences), 1st ed., SAGE Publications Inc., Nov 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔