跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俊佟
研究生(外文):Chun-Tung Liu
論文名稱:具耦合電感直流轉換電路之雙級式單相三線式換流器
論文名稱(外文):Two-Stage Single-Phase Three-Wire Inverter Based on Coupled-Inductor DC Conversion Circuit
指導教授:阮昱霖
指導教授(外文):Yu-Ling Juan
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:耦合電感交錯式單相三線式
外文關鍵詞:Coupled inductorInterleavedSingle phase three wire
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文針對救災系統研製一具耦合電感直流轉換電路之雙級式單相三線式換流器。以四顆12V 鉛酸電池串聯作為救災供電系統之能量來源,由交錯式升壓轉換器將48V 升至175V 或350V 直流電壓,作為換流器之輸入端,並透過單相三線式換流器輸出交流電壓。其中,依照負載用電規格可分為模式A及模式B,需使用220V 時,便使用模式A 將直流電壓升至350V,提供110V及220V 交流輸出;若只需要110V 時,則使用模式B 將直流電壓升至175V即可供應110V 交流輸出。採用低單價之單晶片HT66F50 來實現閉迴路控制策略,其中換流器之功率元件以正弦脈波寬度調變(Sinusoidal Pulse WidthModulation, SPWM)作為切換模式,並由回授控制調變弦波之振幅比例,使得不同負載情況下,各輸出端仍穩定該額定電壓。
經實驗結果驗證,本文系統操作於兩種模式下皆可平衡負載端之交流電壓,且轉換器可操作於最高400W 之輸出功率。其中,輸出於100W 至400W間模式A 最高效率可達89.8%,且皆高於85%;而模式B 最高效率可達91.1%,且皆高於88%。

In this thesis, a two-stage single-phase three-wire inverter based on coupled-inductor DC Conversion circuit is developed. A 48V series-connected lead acid battery module is used as the power source. The inverter is composed of a
two-phase interleaved coupled-inductor boost converter and a conventional three-legs full-bridge inverter. The 48 V DC power is firstly boosted up to 175 V or 350 V DC power for the second stage inverter to provide the required AC power.
According to the load demand, the inverter can be operated under Mode A or Mode B. With the operation mode A, the DC link voltage would be controlled to 350V for the inverter to provide 110V and 220V AC output power simultaneously.
When there is only 110V power requested by the load side, the operation mode would be changed to mode B and the DC link voltage is boosted up to only 175V. The closed loop controller is implemented with low cost microcontroller unit,HT66F50. The sinusoidal pulse width modulation is adopted to control the inverter and the modulation index would be adjusted according to the difference between the command signal and the feedback signal of the output voltage.
The experimental results, show that the output AC voltages are wellcontrolled in both operation modes and different load conditions. Within the range of rated power 100W-400W, the maximum and minimum efficiency of the Mode A are 89.8% and 85%. For Mode B, the maximum and minimum are 91.1% and
88%.

中文摘要..............................i
英文摘要..............................ii
誌謝.................................iii
目錄.................................iv
圖目錄...............................vi
表目錄...............................ix
第一章 緒論......................... 1
1.1 研究背景........................ 1
1.2 研究動機........................ 1
1.3 論文架構........................ 2
第二章 文獻探討...................... 3
2.1 電池基本介紹.................... 3
2.2 升壓轉換器架構................... 6
2.3 交錯式升壓電路................... 8
2.4 單相三線式換流電路............... 10
第三章 系統架構與控制器設計............ 15
3.1 系統架構與動作原理分析............ 15
3.2 系統控制器規劃與閉迴路策略......... 31
第四章 實驗結果...................... 38
4.1 電路參數設計.................... 38
4.2 回授電路設計與驅動電路........... 43
4.3 電路實測....................... 47
第五章 結論與未來研究方向............. 57
5.1 結論.......................... 57
5.2 未來研究方向.................... 58
參考文獻........................... 59

圖目錄
圖2-1 鉛酸電池單體架構................ 4
圖2-2 電容堆疊型架構.................. 7
圖2-3 電感堆疊型架構.................. 8
圖2-4 耦合電感型升壓電路............... 8
圖2-5 傳統交錯式升壓電路架構............ 9
圖2-6 交錯式開關時序.................. 10
圖2-7 本文交錯式升壓電路............... 10
圖2-8 全橋式換流器.................... 11
圖2-9 單相三線式換流器................. 11
圖2-10 正弦脈波寬度調變示意圖........... 12
圖2-11 自然採樣法..................... 13
圖2-12 等效面積然採樣法................ 14
圖2-13 本文單相三線式之SPWM 示意圖...... 14
圖3-1 系統架構........................ 16
圖3-2 本文所提之電路架構................ 17
圖3-3 交錯式升壓直流轉換器.............. 19
圖3-4 耦合電感電流等效圖................ 21
圖3-5 交錯式升壓轉換器動作方式........... 24
圖3-6 交錯式升壓轉換器理論波形........... 25
圖3-7 二次側電感電流波形圖.............. 25
圖3-8 單相三線式換流器電路圖............ 27
圖3-9 模式A 之橋臂切換方法.............. 28
圖3-10 模式B 之橋臂切換方法............. 29
圖3-11 升壓轉換器之閉迴控制方塊圖........ 32
圖3-12 升壓轉換器程式流程圖............. 33
圖3-13 換流器之模式A 閉迴控制方塊圖...... 35
圖3-14 換流器之模式B 閉迴控制方塊圖...... 35
圖3-15 查表值與目標值示意圖............. 36
圖3-16 單相三線式程式流程圖............. 37
圖4-1 實體電路........................ 38
圖4-2 電壓檢測電路..................... 44
圖4-3 電流檢測電路..................... 44
圖4-4 延遲互補電路與波形圖............... 45
圖4-5 負偏壓驅動電路.................... 46
圖4-6 升壓電路於半載之驅動訊號與電感電流... 48
圖4-7 升壓電路於半載之輸入與輸出電壓電流... 48
圖4-8 升壓電路於滿載之驅動訊號與電感電流... 49
圖4-9 升壓電路於滿載輸入與輸出電壓電流..... 49
圖4-10 升壓電路換載測試圖................ 50
圖4-11 升壓電路於不同架構及各模式之效率量測. 51
圖4-12 單相三線式模式A 相異載測試......... 52
圖4-13 單相三線式模式A 半載測試........... 53
圖4-14 單相三線式模式A 滿載測試........... 53
圖4-15 單相三線式模式B 相異載測試......... 54
圖4-16 單相三線式模式B 滿載測試.......... 55
圖4-17 整體電路效率測試................. 56

表目錄
表2-1 鉛酸電池於不同放電電流與效率關係圖... 5
表4-1 電路參數........................ 42
表4-2 元件型號........................ 42

[1]經濟部工業局智慧電動車輛推動辦公室辦公室,電動機車內外銷情況(2009-2013年),http://www.lev.org.tw/Publication/。
[2]李沛融,利用高分子複合材料開發鉛酸電池雙極板,國立成功大學,2011年。
[3]M. Ceraolo, “New dynamical models of lead-acid batteries,” IEEE Transactions on Power Systems, vol. 15, no. 4, pp. 1184-1190, Nov. 2000.
[4]O. Caumont, M. P. Le, C. Rombaut, X. Muneret, and P. Lenain, “Energy gauge for lead-acid batteries in electric vehicles,” IEEE Transactions on Energy Conversion, vol. 15, no. 3, pp. 354-360, Sep. 2000.
[5]H. A. Kiehne, “Battery Technology Handbook,” Expert Verlag, Germany, 1989.
[6]臺灣湯淺電池,"REC22-12",http://www.yuasa.com.tw/index.php,2014年。
[7]K. B. Park, G. W. Moon, and M. J. Youn, “Nonisolated High Step-up Boost Converter Integrated With Sepic Converter,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2266-2275, Sep. 2010.
[8]S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel High Step-Up DC–DC Converter for Fuel Cell Energy Conversion System,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2007-2017, Jun. 2010.
[9]J. H. Lee, J. H. Park, and J. H. Jeon, “Series-Connected Forward-Flyback Converter for High Step-Up Power Conversion,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3629-3641, Dec. 2011.
[10]K. B. Park, G. W. Moon, and M. J. Youn, “Nonisolated High Step-Up Stacked Converter Based on Boost-Integrated Isolated Converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 577-587, Feb. 2011.
[11]K. C. Tseng, J. Z. Chen, J. T. Lin, C. C. Huang, and T. H. Yen, “High Step-Up Interleaved Forward-Flyback Boost Converter With Three-Winding Coupled Inductors,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4696-4703, Sep. 2015.
[12]R. J. Wai and R. Y. Duan, “High Step-Up Converter With Coupled- Inductor,” IEEE Transactions on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sep. 2005.
[13]L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC-DC Converters With High Step-Up Voltage Gain,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[14]S. M. Chen, T. J. Liang; L. S. Yang, and J. F. Chen “A Safety Enhanced, High Step-Up DC–DC Converter for AC Photovoltaic Module Application,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1809-1817, Apr. 2012.
[15]Y. Zhao, W. Li, and X. He “Single-Phase Improved Active Clamp Coupled-Inductor-Based Converter With Extended Voltage Doubler Cell,” IEEE Transactions on Power Electronics, vol. 27, no.6, pp. 2869-2878, Jun. 2012.
[16]S. M. Chen, M. L. Lao, Y. H. Hsieh, T. J. Liang, and K. H. Chen, “A Novel Switched-Coupled-Inductor DC-DC Step-Up Converter and Its Derivatives,” The IEEE Transactions on Industry Applications, vol. 51, no.1 pp. 309-314, Jan. 2015.
[17]S. Dwari and L. Parsa, “An Efficient High-Step-Up Interleaved DC–DC Converter With a Common Active Clamp,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 66-78, Jan. 2011.
[18]W. Li, W. Li, X. He, D. Xu, and B. Wu, “General Derivation Law of Nonisolated High-Step-Up Interleaved Converters With Built-In Transformer,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1650-1661, Mar. 2012.
[19]W. Li, Y. Zhao, J. Wu, and X. He, “Interleaved High Step-Up Converter With Winding-Cross-Coupled Inductors and Voltage Multiplier Cells,” IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 133-143, Jan. 2012.
[20]W. Li, X. Xiang, C. Li, W. Li, and X. He, “Interleaved High Step-Up ZVT Converter With Built-In Transformer Voltage Doubler Cell for Distributed PV Generation System,” IEEE Trans. on Power Electronics, vol. 28, no. 1, pp. 300-313, Jan. 2013.
[21]Y. S. Roh, Y. J. Moon, J. Park, and C. Yoo, “A Two-Phase Interleaved Power Factor Correction Boost Converter With a Variation-Tolerant Phase Shifting Technique,” IEEE Trans. on Power Electronics, vol. 29, no. 2, pp. 1032-1040, Feb. 2014.
[22]蔡宏群,以微控器為基礎之單相交流穩壓器研製,大同大學碩士論文,2009年。
[23]S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” The IEEE Proc.-Electronics Power Applications, vol. 141, no.4 pp. 197-205, Jul. 1994.
[24]C. M. Liaw and S. J. Chiang, “Design and Implementation of a Single-phase Three-Wire Transformerless Battery Energy Storage System,” IEEE Transactions on Industrial Electronics, vol. 41, no. 5, pp. 540-549, Oct. 1994.
[25]陳榮泰,單相三線式數位化光伏能量轉換系統,國立成功大學碩士論文,2001年。
[26]林悟宏,三相三線式數位化光伏能量轉換系統,國立成功大學碩士論文,2002年。
[27]Y. C. Kuo, T. J. Liang, and J. F. Chen, “A High-Efficiency Single-Phase Three-Wire Photovoltaic Energy Conversion System,” IEEE Transactions on Industrial Electronics, vol. 50, no. 1, pp. 116-122, Feb. 2003.
[28]Y. Zhou, Q. Yang, Q. Zhang, and L. Zhang, “The Generating Method of SPWM with Double-interruption Based on DSP,” International Conference on Intelligent Networks and Intelligent Systems, pp. 617-620, Nov. 2009.
[29]W. Ji and W. Lin, “Estimation of Harmonics for Generating SPWM Based on DSP,” International Conference on Artificial Intelligence and Computational Intelligence (AICI), pp. 70-74, Oct. 2010.
[30]C. Lin, Y. Liu, and B. Sun, “Study On The Technology Of Inverter Based On DSP And SPWM,” International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), pp.1993-1995, Mar. 2012.
[31]Y. X. Gao and D. Sutanto, “A Method of Reducing Harmonic Contents for SPWM,” International Conference on Power Electronics and Drive Systems, pp. 156-160, Jul. 1999.
[32]W. Lin, P. X. Liu, and S. Liu, “Harmonic Analysis of SPWM Wave Generated PWM Output,” Proceedings of the 6th World Congress on Intelligent Control and Automation, pp. 5345-5349, Jun. 2006.
[33]梁適安,電源供給器之理論與實務設計,第二版,全華科技圖書股份有限公司,2008年。
[34]吳義利,切換式電源轉換器原理與實用設計技術(實例設計導向),文笙書局股份有限公司,2012年。
[35]鐘啓仁,HT66Fxx Flash MCU原理與實務-組合語言篇,全華圖書股份有限公司,2010年。
[36]維普資訊,開關電源變壓器磁芯氣隙量的計算,http://www.cqvip.com,2008年。
[37]維普資訊,帶有負偏壓之IR2110驅動器,http://www.cqvip.com,2000年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top