跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪智僑
研究生(外文):Hung,Chih-Chiao
論文名稱:探討以青香蕉澱粉製備第三型抗性澱粉及其理化特性
論文名稱(外文):Preparation and physicochemical properties of resistant starch III from green banana starch
指導教授:廖宏儒
指導教授(外文):Liao,Hung-Ju
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:103
語文別:中文
中文關鍵詞:青香蕉抗性澱粉普魯蘭酶壓熱-冷卻循環
外文關鍵詞:green bananaresistant starchpullulanaseautolacving-cooling cycle
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1938
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究目的為將青香蕉澱粉經普魯蘭酶之脫支作用及壓熱-冷卻步驟來製備其第三型抗性澱粉,並針對其物化性質、結構分析及體外消化試驗進行探討。以青香蕉為原料,分離澱粉後,將青香蕉澱粉 (Green banana starch, GBS) 進行第三型抗性澱粉的製備步驟,分為兩部分,第一部分以普魯蘭酶進行脫支作用,接著高壓加熱 (121°C/30 min) 及回凝 (4°C/24 h) 處理,得到DGBS (Debranched GBS) 樣品,第二部分為DGBS澱粉乳進行重覆壓熱-冷卻循環步驟為ADGBS (Autoclaved-cooled DGBS) 樣品。研究結果顯示GBS經過脫支及回凝的過程後,直鏈澱粉顯著增加。抗性澱粉含量方面,GBS約為46.9%,而DGBS及ADGBS皆約為33.3%。DGBS及ADGBS澱粉顆粒較不易膨潤且溶解度增加。熱性質方面,DGBS及ADGBS之RS3峰值溫度皆高於130°C,與GBS相比具有更好的熱穩定性,且在膳食纖維部分, ADGBS其IDF的含量顯著高於DGBS及GBS,表示增加其耐熱的RS3。成糊性質方面,與天然澱粉典型的糊化曲線相比,DGBS及ADGBS其糊化曲線幾乎呈直線且接近於零,黏度並沒有明顯的變化。晶體結構方面,GBS呈C型結晶,DGBS及ADGBS則顯示為B型和V型結晶之混合型,且DGBS及ADGBS之紅外線光譜吸收峰比值均高於GBS,顯示澱粉顆粒內有序度提高。DGBS及ADGBS其估計升糖指數在61.1~64.4範圍內,屬於中血糖指數食品。綜合上述實驗顯示,GBS製備之青香蕉第三型抗性澱粉 (DGBS及ADGBS) 改變了天然澱粉之理化性質,證明具有不明顯的成糊特性、增加結晶度且更好的熱穩定性,其中又以ADGBS具有最多耐熱的第三型抗性澱粉且更高之耐熱性,這些結果表明青香蕉第三型抗性澱粉提高了青香蕉澱粉原有的功能特性,可應用於適合的食品加工業中,提高食品的功能性。
The objective of this study was to prepare RS III from green banana by using pullulanase followed by autoclaving-cooling cycle, and to investigate the physico-chemical properties, structural properties and in vitro digestibility of treated starch sample. Green banana was used as raw material and isolated to obtain green banana starch (GBS). RS III preparation was separated into two parts. First part was starch debranched by using enzymatic method and followed by autoclaving at 121°C for 30 min and annealed at 4°C for 24 h to obtain DGBS. Second part was obtaining ADGBS by treating DGBS with second autoclaving-cooling cycle. Amylose content of GBS increased significantly after debranching and annealing process. Moreover, resistant starch content of GBS 46.9% while DGBS and ADGBS were approximately 33.3%. Solubility of DGBS and ADGBS increased but swelling power showed an opposite result. For thermal properties, Tp values of RS III from DGBS and ADGBS were both higher than 130°C, showed a better thermal stability compared to GBS. Furthermore, higher content in total dietary fiber in ADGBS than DGBS and GBS had indicated increasing heat stable RS III. Moreover, due to the changes in gelatinization properties, pasting curves of DGBS and ADGBS were mostly approaching to zero, representing no change in viscosity. On the other hand, crystalline pattern of GBS was typically C type diffraction pattern while DGBS and ADGBS were representing a complex type of B type and V type diffraction pattern. Both ratios of peak infrared absorbance of DGBS and ADGBS were higher than GBS, representing higher tightness and intactness of the granules. Estimated Glycemic Index value of DGBS and ADGBS ranged between 61.1 and 64.4 showed that they belonged to medium GI food.In overall, the changes in physico-chemical properties of ADGBS and ADGBS prepared from GBS compared to native starch showed that they had insignificant pasting properties, higher crystallinity and better heat stability. Furthermore, higher heat stable RS III content in ADGBS led to greater heat stability among the samples. In conclusion, increasing RS III in green banana starch could lead to specific functions, and therefore, it can be applied in food processing industry in order to increase functional properties of processed food.
中文摘要 I
Abstract II
目錄 IV
表目錄 IX
圖目錄 X
第一章 前言 1
第二章 文獻回顧 2
一、 香蕉 2
(一) 簡介 2
(二) 品種 2
(三) 成熟度 3
二、 澱粉 6
(一) 澱粉簡介 6
(二) 澱粉顆粒的結晶性質 7
(三) 澱粉的理化特性 13
(四) 澱粉的分類 17
三、 抗性澱粉 19
(一) 抗性澱粉的定義 19
(二) 抗性澱粉的分類 19
(三) 影響抗性澱粉生成的因素 23
(四) 抗性澱粉的功能特性 28
(五) 抗性澱粉的應用 28
第三章 材料與方法 29
一、 實驗架構 29
二、 實驗材料 30
(一) 材料 30
(二) 儀器設備 30
(三) 化學試藥 32
三、 樣品製備 33
(一) 青香蕉澱粉製備 33
(二) 製備青香蕉之第三型抗性澱粉 34
四、 一般成分分析 35
(一) 水分含量 (Moisture) 35
(二) 灰分含量 (Ash) 35
(三) 粗蛋白質 (Crude protein) 35
(四) 粗脂肪 (Crude lipid) 36
五、 直鏈澱粉 (Amylose) 含量 37
六、 抗性澱粉 (Resistant starch) 含量 37
七、 總澱粉 (Total starch) 含量 38
八、 總膳食纖維 (Total dietary fiber, TDF) 含量 39
(一) 非水溶性膳食纖維 (Insoluble dietary fiber, IDF) 39
(二) 水溶性纖維 (Soluble dietary fiber, SDF) 40
九、 粉末色澤 (Color parameters) 41
(一) L*、a*、b* 測定 41
(二) 白度值 (Whintness index, W.I) 41
十、 膨潤力 (Swelling power) 及溶解度 (Solubility) 41
十一、 熱性質 (Thermal properties) 42
十二、 成糊特性 (Pasting properties) 42
十三、 掃描式電子顯微鏡 (Scanning electron microscope, SEM)觀察 42
十四、 X光繞射 (X-ray diffraction) 分析 43
十五、 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Rays Spectrometer, FTIR Spectrometer) 43
十六、 體外消化試驗 (In vitro digestibility) 43
(一) 體外消化測定 43
(二) 體外消化之還原糖測定 (Reducing sugar analysis of in vitro digestion) 45
十七、 統計分析 (Statistical analysis) 45
第四章 結果與討論 46
一、製備青香蕉之第三型抗性澱粉 46
(一) 普魯蘭酶添加量對抗澱粉含量之影響 46
(二) 壓熱與冷卻循環對抗性澱粉含量之影響 46
三、色澤分析 54
四、膨潤力與溶解度 56
五、熱性質 59
六、成糊特性 62
七、掃描式電子顯微鏡 66
八、X射線繞射分析 69
九、FTIR 72
十、體外消化率 74
第五章 結論 78
第六章 參考文獻 79
賴佩吟 (2014)。米穀粉以酵素法製備抗性澱粉對其理化特性之影響。國立嘉義大學生命科學院食品科學系研究所碩士論文,嘉義。
黃新川 (1995)。台灣農家要覽-農作篇(二)。財團法人豐年社,台北。
李淑英 (2008)。香蕉保護。行政院農業委員會動植物防疫檢疫局,台北。
Abegunde, O. K., Mu, T. H., Chen, J. W., and Deng, F. M. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33: 169-177.
Aparicio-Saguilán, A., Flores-Huicochea, E., Tovar, J., García-Suárez, F., Gutiérrez-Meraz, F., and Bello-Pérez, L.A. (2005). Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch:partial characterization. Starch/Stärke, 57: 405-412.
Atwell, W. A., Hood, L. F., Lineback, D. R., Varriano-marston, E., and Zobel, H. F. (1988). The terminology and methodology associated with basic starch phenomena. Cereal Foods World, 33 (3): 306–311.
Anderson, J. M., and Bridges, S. R. (1988). Dietary fiber content of selected foods. The American Journal of Clinical Nutrition, 47: 440-447.
Aurore, G., Parfait, B., and Fahrasmane, L. (2009). Bananas raw materials for making processed food products. Trends in Food Science &; Technology, 20: 78-91.
Baixauli, R., Salvador, A., Martinez-Cervera, S., and Fiszman, S. M. (2008). Distinctive sensory features introduced by resistant starch in baked products. Food Science and Technology, 41: 1927–1933.
Behall, K. M., and Schofield, D. J. (2005). Food amylose content affects postprandial glucose and insulin responses. Cereal Chemistry, 82(6): 654–659.
Bello-Pérez, L. A., Agama-Acevedo, E., Sánchez-Hernández, L., and Paredes-López, O. (1999). Isolation and partial characterization of banana starches. J. Agric. Food Chem, 47: 854-857.
Bello-Pérez, L. A., Romero-Manilla, R., and Paredes-López, O. (2000). Preparation andproperties of physically modified banana starch prepared by alcoholic-alkalinetreatment. Starch/Stärke, 52: 154–159.
Berry, C. S. (1986). Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amyolytic enzymes during the determination of dietary fibre. Journal of Cereal Science, 4: 301–314.
Biliaderis, C. G. (1998). Structures and phase transition of starch polymers. In: R. H. Walter (ed.), Polysaccharide association structures in food. Marcel Dekker, New York, 57–168.
Biliaderis, C. G., Page, C. M., and Maurice, T. J. (1986). Non-equilibrium melting of amylose-V complexes. Carbohydrate Polymers, 6: 269-288.
Birt, D. F., Boylston, T., Hendrich, S., Jane, J. L., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G.J., Rowling, M., Schalinske, K., Scott, M.P., &; Whitley, E.M. (2013). Resistant starch: promise for improving human health. American Society for Nutrition. Adv. Nutr., 4: 587–601.
Biliaderis, C. G., and Zawistowski, J. (1990). Viscoelastic behaviour of aging starch gels: effects of concentration, temperature and starch hydrolysates on network properties. Cereal Chem, 67: 240–246.
Bjorck, I., Nyman, M., Pedersen, P., Siljestrom, M., Asp, N. G., and Eggum, B. O. (1987). Formation of enzyme resistant starch during autoclaving of wheat starch: Studies in vitro and in vivo. Journal of Cereal Science, 6: 159–172.
Buleon, A., Colonna, P., Planchot, V., and Ball, S. (1998). Starch granules: Structure and biosynthesis. International Journal of Biological Macromolecules, 23: 85-112.
Capron, I., Robert, P., Colonna, P., Brogly, M., and Planchot, V. (2007). Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydrate Polymers, 68: 249-259.
Cavallero, A., Empilli, S., Brighenti, F., and Stanca, A. M. (2002). High (1→3, 1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. Journal of Cereal Science, 36: 59-66.
Champ, M., Langkilde, A. M., Brouns, F., Kettlitz, B., and Collet, Y. B. (2003). Advances in dietary fiber characterization. 1. Definition of dietary fiber, physiological relevance, health benefits and analytical benefits. Nutr Res Rev, 16: 71–82.
Chandrashekar, A., and Kirleis, A. W. (1988). Influence of protein on starch gelatinization in sorghum. Cereal Chem, 65 (6): 457-462.
Cheetham, N. W. H., and Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4): 277-284.
Dhital, S., Shrestha, A. K., and Gidley, M. J. (2010). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82(2): 480-488.
Eerlingen, R. C., Deceuninck, M., and Delcour, J. A. (1993). Enzyme-Resistant starch. Ⅱ. Influence of amylose chain length on resistant starch formation. Cereal Chem, 70 (3): 345-350.
Eerlingen, R. C., Jacobs, H., and Delcour, J. A. (1994). Enzyme-resistant starch. V. Effect of retrogradation of waxy maize starch on enzyme susceptibility. Cereal Chemistry, 71 (4): 351–355.
Eliasson, A. C., and Krog, N. (1985). Physical properties of amylose-monoglyceride complexes. Journal of Cereal Science, 3: 239-248.
Englyst, H. N., and Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. American Journal of Clinical Nutrition, 44: 42–50.
Englyst, H. N., Kingman, S. M. and Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46 (Supply 2): S33-50.
Englyst, H. N., Wiggins, H. S., and Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 107: 307–318.
Escarpa, A., Gonzalez, M. C., Morales, M. D., and Saura-Calixto, F. (1997). An approach to the influence of nutrients and other food constituents on resistant starch formation. Food Chem, 60 (4): 527–532.
Faisant, N., Buleon, A., Colonna, P., Molis, C., Lartigue, S., Galmiche, J. P., and Champ, M. (1995). Digestion of raw banana starch in the small intestine of healthy humans: Structural features of resistant starch. British Journal of Nutrition, 73: 111–123.
Faraj, A., Vasanthan, T., and Hoover, R. (2004). The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Research International, 37: 517–525.
Franco, C. M. L., Ciacco, C. F., and Tavares, D. Q. (1995). Effect of heat-moist treatment on enzymatic susceptibility. Starke/Starch, 47 (6): 223–228.
Freitas, R. A., Paula, R. C., Feitosa, J. P. A., Rocha, S., and Sierakowski, M. R. (2004). Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches. Carbohyd Polym, 55: 3-8.
Galvez, F. C., and Resurrection, A. V. A. (1992). Reliability of the focused group technique in determining the quantity characteristics of mung bean (Vigna radiate (L.) Wilezee) noodles. Journal of Sensory Studies, 7: 315-326.
Gidley, M. J., and Bulpin, P. V. (1987). Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: Minimum chain-length requirement of the formation of double helices. Carbohydrate Research, 161: 291–300.
Gidley, M. J., Cook, D., Darke, A. A. H., Hoffmann, R. A., Russell, A. L., and Greenwell, P. (1995). Molecular order and structure in enzyme-resistant retrograded starch. Carbohydrate Polymers, 28: 23–31.
Goñi, I., Garcia-Alonso, A., and Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Reseatch, 17 (3): 427-437.
González-Soto, R. A., Mora-Escobedo, R., Hernández-Sánchez, H., Sánchez-Rivera, M., and Bello-Pérez, L. A. (2007). The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. Food Research International, 40: 304-310.
Govindasamy, S., Campanella, O. H., and Oates, C. G. (1996). High moisture twin-screw extrusion of sago starch: 1. Influence on granule morphology and structure. Carbohydrate Polymers, 30: 215–286.
Haynes, L., Gimmler, N., Locke, J. P., Kweon, M. R., Slade, L. and Levine, H. (2000). Process for Making Enzyme-Resistant Starch for reduced calorie flour replacer. US Patent, 6013299.
Hernandez, O., Emaldi, U., and Tovar, J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydr Polym, 71: 648–655.
Hermansson, A. M., and Svegmark, K. (1996). Developments in the understanding of starch functionality. Trends in Food Science &; Technology, 7: 345-353.
Hill, S.E., Sevenou, O., Farhat, I.A., and Mitchell, J.R.(2002). Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules 31: 79-85.
Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydrate Research, 147: 342–347.
Hizukuri, S. (1988). Recent advances in the molecular structure of starch. Denpun Kagaku, 35: 185–198.
Hizukuri, S. (1996). Starch - analytical aspects, In A. C. Eliasson (ed.), Carbohydrates in foods. Marcel Dekker, New York, 347–429.
Holm, J., Asp, N. G., and Bjorck, I. (1987). Factors affecting enzymatic degradation of cereal starches in vitro and in vivo. In: Morton Ellis D, editor. Cereal in a European context. Bournemouth, Dorset: First European Conference on Food Science and Technology. New York, NY: VCH Publisher. Harwood, Chichester, U.K.: p 169–87.
Hsu, C. L., Chen, W., Weng, Y. M., and Tseng, C. Y. (2003). Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry, 83: 85-92.
Nugent, A. P. (2005). Health properties of resistant starch. Br Nutr Foundation Nutr Bull, 30: 27–54.
Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., and Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76: 629–637.
Jane, J. L., Kasemsuwan, T., Leas, S., Zobel, H., and Robyt, J. F. (1994). Anthology ofstarch granule morphology by scanning electron microscopy. Starch/Starke, 46: 121–129.
Juliano, B. O., Perez, C. M., Blakeney, A. B., Castillo, T., Kongseree, N., Laignelet, and B., Lapis, E. T. (1981). International cooperative testing on the amylose content of milled rice. Starch/Stärke, 33: 157-162.
Kavita, V., Varghese, S., Chitra, G. R., and Jamuna, P. (1998). Effects of processing, storage time and temperature on the resistant starch of foods. J Food Sci Technol, 35 (4): 299–304.
Lawal, O. S., Lapasin, R., Bellich, B., Olayiwola, T. O., Cesàro, A., Yoshimura, M., and Nishinari, K. (2011). Rheology and functional properties of starches isolated from fiveimproved rice varieties from West Africa. Food Hydrocolloids, 25: 1785–1792.
Lee, S. K., Mun, S. H., and Shin, M. S. (1997). Effect of heating conditions on the resistant starch formation. Korean Agricultural Chemistry and Biotechnology, 40: 220–224.
Lee, Y. E., and Osman, E. M. (1991). Correlation of morphological changes of rice starch granules with rheological properties during heating in excess water. J. Kor. Agric. Chem. Soc., 34: 379-385.
Lehmann, U., Jacobasch, G., and Schmiedl, D. (2002). Characterization of Resistant Starch Type III from Banana (Musa acuminata). J. Agric. Food Chem, 50: 5236-5240.
Lei, F. U., Ji-chun, T., Cai-ling, S., and Chun, Li. (2008). RVA and Farinograph Properties Study on Blends of Resistant Starch and Wheat Flour. Agricultural Sciences in China, 7: 812-822.
Leong, Y. H., Karim, A. A., and Norziah, M. H. (2007). Effect of pullulanase debranching of sago (Metroxylon sagu) starch at subgelatinization temperature on the yield of resistant starch. Starch-Starke, 59(1): 21–32.
Li-Chan, E. C. Y., and Ma, C. Y. (2002). Thermal analysis of flaxseed (Linum sitatissimum) proteins by differential scanning calorimetry. Food Chem, 77: 495-502.
Li, S., Ward, R., and Gao, Q. (2011). Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch. Food Hydrocolloids, 25(7): 1702–1709.
Lii, C. Y., Chang, S. M., and Young, Y. L. (1982). Investigation of the physical and chemical properties of banana starches. Journal of Food Science, 47: 1493–1497.
Li, J. Y., and Yeh, A. I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50 (3): 141–148.
Liu, Q., Donner, E., Yin, Y., Huang, R. L., and Fan, M. Z. (2006). The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. Food Chemistry, 99: 470–477.
Marques, C., D’auria, L., Cani, P. D., Baccelli, C., Rozenberg, R., Ruibal-Mendieta, N. L., Petitjean, G., Delacroix, D. L., Quetin-Leclercq, J., Habib-Jiwan, J., Meurens, M., and Delzenne, N. M. (2007). Comparison of glycemic index of spelt and wheat bread in human volunteers. Food Chemistry, 100: 1265–1271.
Meng, L., David, C. S., and James, F. T. (1997). Optical chlorophyll sensing system for banana ripening. Postharvest Biology and Technology, 12: 273–283.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31 (3): 426-428.
Mitsuda, H. (1993). Retrogradation of cooked rice. J Food Qual, 16: 321–325.
Moller, J. (2011). Dietary fibre – codex definition and methods of analysis. A white paper from FOSS, 1: 1-4.
Mutungi, C., Rost, F., Onyango, C., Jaros, D., and Rohm, H. (2009). Crystallinity, thermal and morphological characteristics of resistant starch type III produced by hydrothermal treatment of debranched cassava starch. Starch-Starke, 61(11): 634–645.
Nunez-Santiago, M.C., Bello-Perez, L. A., and Tecante, A. (2004). Sweeling–solubility characteristics, granule size distribution and rheological behaviour of banana (Musa paradisiaca) starch. Carbohydrate Polymers, 56: 65–75.
O'Dea, K., Nestel, P. J., and Antonoff, L. (1980). Physical factors influencing postprandial glucose and insulin responses to starch. Am J Clin Nutr, 33: 760–765.
Polesi, L. F., and Sarmento, S. B. S. (2011). Structural and physicochemical characterization of RS prepared using hydrolysis and heat treatments of chickpea starch. Starch/Starke, 63: 226–235.
Pongjanta, J., Utaipattanaceep, A., Naivikul, O., and Piyachomkwan, K. (2009). Debranching enzyme concentration effected on physicochemical properties and α-amylase hydrolysis rate of resistant starch type III from amylose rice starch. Carbohydrate Polymers, 78: 5-9.
Raigond, P., Ezekiel, R., and Raigond, B. (2014). Resistant starch in food:a review. J Sci Food Agric, 21.
Ranhotra, G. S., Gelroth, J. A., Astroth, K., and Eisenbraun, G.J. (1991). Effect of resistant starch on intestinal responses in rats. Cereal Chem, 68(2): 130–132.
Rao, V. S. R., Qasba, P. K., Balaji, P. V., and Chandrasekaran, R. (1998). Conformation of Carbohydrates. Harwood Academic Publishers, Amsterdam, 191–221.
Ratnayake, W. S., and Jackson, D. S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers, 67(4): 511–529.
Ratnayake, W. S., Hoover, R. and Warkentin, T. 2002. Pea starch: Composition, structure and properties - a review. Starch/Staerke, 54: 217–234.
Reddy, C. K., Haripriya, S., Mohamed, A. N., and Suriya, M. (2014). Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch. Food Chemistry, 155: 38-44.
Reddy, C. K., Pramila, S., and Haripriya, S. (2015). Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme. J Food Sci Technol, 52: 1594-1601.
Reddy, C. K., Suriya, M., and Haripriya S. (2013). Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris.L) starch by enzymatic method. Carbohydrate Polymers, 95: 220-226.
Ring, S. G., Gee, J. M., Whittam, M., Orford, P., and Johnson, I. (1988). Resistant Starch. Its chemical form in foodstuffs and effect on digestibility in vitro. Food Chem, 28: 97–109.
Sajilata, M. G., Singhal, R. S., and Kulkarni, P. R. (2006). Resistant starch – A review. Institute of food technologists, 5: 1-16.
Sevenou, O., Hill, S. E., Farhat., and Mitchell, J. R. (2002). Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 31: 79-85.
Shin, S. I., Byun, J., Park, K. H., and Moon, T. W. (2004). Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chemistry, 81: 194–198.
Shi, Y. C., Capitani, T., Trzasko, P., and Jeffcoat, R. (1998). Molecular structure of a lowamylopectin starch and other high-amylose maize starches. Journal of Cereal Science, 27(3): 289-299.
Shi, M., Chen, Y., Yu, S., and Gao,Q. (2013). Preparation and properties of RS III from waxy maize starch with pullulanase. Food Hydrocolloids 33: 19 -25.
Sievert, D., and Pomeranz, Y. (1989). Enzyme-resistant starch II. Characterization and evaluation by enzymatic, thermoanalytical and microscopic methods. Cereal Chem, 66 (4): 342–347.
Sievert, D., and Würsch, P. (1993). Thermal behaviour of potato amylose and enzyme-resistant starch from maize. Cereal Chemistry, 70: 333–350.
Simsek, S., and El, S. N. (2012). Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydrate Polymers, 90: 1204-1209.
Smith, A. M. (2001). The biosynthesis of the starch granule. Biomacromolecules, 2: 335–341.
Spencer, K. E., and Jane, J. (1999). Chemical and physical properties ofginkgo (Ginkgo biloba) starch. Carbohydrate Polymers, 40: 261–269.
Soltani, M., Alimardani, R., and Omid, M. (2010). Prediction of banana quality during ripening stage using capacitance sensing system. Australian Journal of Crop Science, 4 (6): 443-447.
Teixeira, M. A. V., Ciacco, C. F., Tavares, D. Q., and Bonezzi, A. N. (1998). Occurrenceand characterization of resistant starch from corn and banana starch. Ciencia eTecnologia de Alimentos, 18: 246–253.
Terai, H., Ueda, Y., and Ogata, K. (1973). Studies on the mechanism of ethylene action for fruits ripening. Soc. Hort.sci, 42 (1): 75-80.
Tester, R. F., and Karkalas, J. (2002). Starch. In: Steinbu¨chel, A. (Series Ed.) Vandamme, E.J., De Baets, S., Steinbu¨chel, A. (vol. Eds.), Biopolymers, vol. 6. Polysaccharides. II. Polysaccharides from Eukaryotes, Wiley–VCH, Weinheim, pp. 381–438.
Tester, R. F., Karkalas, J., and Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39:151–165.
Tester, R. F., Morrison, and W. R. (1990a). Swelling and gelatinisation of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem, 67: 551-557.
Tester, R. F., and Morrison, W. R. (1990b) Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem, 67: 558-563.
Theander, O., and Aman, P. (1979). Studies on dietary fibre. Analysisand chemical characterization of water-soluble and water-insoluble dietary fibers. Swed J Agric Res, 9: 97-106.
Thomas, D. J., and Atwell, W. A. (1999). Starches (handbook series). St. Paul, MN: American Association of Cereal Chemists.
Thompson, L. U., and Yoon, J. H. (1984). Starch digestibility as affected by polyphenol and phytic acid. J Food Sci, 49: 1228–1229.
Tovar, J., Sáyago-Ayerdi, S. G., Peñalver, C., Paredes-Lopez, O., and Bello-Pérez, L. A. (2003). In-vitro starch hydrolysis index and predicted glycemic index of corn tortilla, black beans (Phaseolus vulgaris L.) and Mexican“taco”. Cereal Chemistry, 80(5): 533–535.
Utrilla-Coello, R.G., Rodríguez-Huezo, M.E., Carrillo-Navas, H., Hernández-Jaimes, C., Vernon-Carter, E.J., and Alvarez-Ramirez, J. (2014). In vitro digestibility, physicochemical, thermal and rheologicalproperties of banana starches. Carbohydrate Polymers, 101: 154-162.
Van Soest, J. J. G., Tournois, V. H., De Wit, D., and Vliegenthart, J. F. G. (1995). Shortrange structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 279: 201–214.
Vatanasuchart, N., Niyomwit, B., and Wongkrajang, K. (2012). Resistant starch content, in vitro starch digestibility and physico-chemical properties of flour and starch from Thai bananas. Maejo International Journal of Science and Technology, 6(2): 259-271.
Waliszewski, K. N., Aparicio, M. A., Bello, L. A., and Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate Polymers, 52: 237-242.
Wang, J., Tang, X. J., Chen, P. S., and Huang, H. H. (2014). Changes in resistant starch from two banana cultivars during postharvest storage. Food Chemistry, 156: 319-325.
Wang, L. Z., and White, P. J. (1994). Structure and properties of amylose, amylopectin and intermediate material of oat starches. Cereal Chemistry, 71: 263–268.
Williamson, G., Belshaw, N. J., Self, D. J., Noel, T. R., Ring, S. G., Cairns, P., et al. (1992). Hydrolysis of A- and B-type crystalline polymorphs of starch by α-amylase, β-amylase and glucoamylase 1. Carbohydrate Polymers, 18(3): 179-187.
Wu, H. C. H., and Sarko, A. (1978a). The double-helical molecular structure of crystalline a-amylose. Carbohydrate Research, 61: 27-40.
Wu, H. C. H., and Sarko, A. (1978b). The double helical molecular structure of crystalline b-amylose. Carbohydrate Research, 61: 7-25.
Yu, X., Houtman, C., and Atalla, R. H. (1996). The complex of amylose and iodine. Carbohydrate Research, 292: 129-141.
Yue, P., and Waring, S. (1998). Resistant starch in food applications. Cereal Foods World, 43(9), 690–695.
Zabidi, M. A., and Aziz, N. A. A. (2009). In vitro starch hydrolysis and estimated glycaemic index of bread substited with different percentage of chempedak (Artocarpus integer) seed flour. Food Chemitry, 117: 64-68.
Zhang, P., and Hamaker, B. R. (2012). Banana starch structure and digestibility. Carbohydrate Polymers, 87: 1552-1558.
Zhang, G., Ao, Zihua., and Hamaker, R. (2006). Slow Digestion Property of Native Cereal Starches. Biomacromolecules, 7: 3252-3258.
Zhou, M., Robards, K., Glennie-Holmes, M., and Helliwell, S. (1998). Structure and Pasting Properties of Oat Starch. Cereal Chem, 75(3): 273–281.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top