跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴仁信
研究生(外文):Ren-Xin Lai
論文名稱:修飾氧化鎳與氧化亞銅的氧化鋯/二氧化鈦光觸媒的合成與其在紫外光與可見光下降解苯酚的催化活性探討
論文名稱(外文):Photodegradation of phenol over NiO/Cu2O modified zirconia incorporated titania photocatalyst by UV and visible light: A case study
指導教授:楊鐘松
指導教授(外文):Chung-Sung Yang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:114
中文關鍵詞:含浸法二氧化鈦苯酚光催化反應
外文關鍵詞:photocatalystimpregnationTiO2phenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文將沿用溶膠凝膠法合成摻雜二氧化鋯之二氧化鈦光觸媒ZIT,並利用含浸法(Impregnation)將兩種過渡金屬鎳與銅披覆在ZIT載體上,並經由高溫鍛燒得到一系列批覆金屬氧化物之二氧化鈦雙金屬複合光觸媒NiOX-ZIT與CuOX-ZIT,並利用粉末X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡、傅立葉轉換紅外線光譜儀、氮氣吸附脫附測定等儀器來探討在不同過渡金屬披覆比例下產物表面型態的改變以及性質的變化;透過化學分析電子能譜儀反捲積解析的結果發現摻雜的鎳氧化物主要為0價及正2價、銅氧化物為正1價的氧化亞銅,另從紫外光可見光漫反射光譜中發現經過氧化鎳與氧化亞銅的披覆相較於ZIT在可見光區域吸收有增強的現象,證實過渡金屬鎳/銅氧化物的添加有助於降低提高在藍光下的催化活性。
本文將合成出的雙金屬複合光觸媒對常見於生產樹脂、殺菌劑、防腐劑以及藥物的重要原料中具致癌以及突變原的苯酚進行光降解反應,並在兩種不同波長紫外光(365nm)及藍光(456nm)光源照射下,藉由螢光分光光譜儀偵測反應後苯酚剩餘濃度變化來比較各觸媒的催化效率,UV光下以ZIT具最佳催化效率(R=-0.0060 min-1 );BL光下以NiTiO2具最佳催化效率(R=-0.0036 min-1)為ZIT的3倍、市售Degussa P25的2.5倍,鎳與銅的最佳披覆比例分別為1.5wt%、1.0wt%。苯酚光降解後產物利用核磁共振儀進一步分析。
The present study reports a highly photoactive ZT3-48 catalyst for degradation of Rhodamine B.ZT3-48 photocatalyst were synthesized by sol-gel method.A simple way of preparation of Ni,Cu-ZT3-48 via impregnation followed by calcination at 723/773K in atmosphere with different Ni/Cu:ZT3-48 weight% is presented. The catalyst was characterized using XRD,TEM,SEM, XPS, UV-Vis/DR spectroscopy and BET analyzer. The XPS spectrum deconvolution found the nickel oxidation state are Ni2+,Ni0 existed in the photocatalysts after calcinated.And copper oxidation state are Cu1+ .In comparison with UV-vis DRS spectrum of ZT3-48, Ni,Cu-ZT3-48 show red shift in the absorption band toward visible light regions.
The photocatalytic activity of the materials was studied during degradation of phenol under irradiation with UV or Vis light with wavelengths longer than 365 nm or 456 nm. The obtained results suggest the occurrence of a charge transfer between TiO2 and NiO/Cu2O phases resulting in a relatively high activity of NiOX/CuOX-ZT3-48 materials under the irradiation up to 456 nm.The photocatalytic rate of NiTiO2 (R=-0.0060 min-1) was 2.5 times as faster as Degussa P25,3times as as faster as ZT3-48 under irradiation with Vis light. The optimum level of NiO/Cu2O loading of the impregnation photocatalyst was found at 1.5wt%,1.0wt%.The products for photodegradation of phenol were analyzed by NMR.
總目錄 I
圖目錄 V
表目錄 X
中文摘要 1
Abstract 2
第一章 緒論 3
第二章 二氧化鈦相關文獻回顧 6
2-1二氧化鈦晶體結構與基本性質 6
2-2半導體n/p-type 8
2-3光催化的原理與機制 11
2-4二氧化鈦之改質 13
2-4-1摻雜過渡金屬 13
2-4-2添加貴重金屬 14
2-4-3摻雜非金屬 14
2-4-4改質方法 15
第三章 實驗方法 17
3-1實驗藥品 17
3-1-1 ZIT光觸媒製備藥品 17
3-1-2 NiOX/CuOX-ZIT光觸媒實驗藥品 17
3-1-3光催化反應藥品 18
3-3-4 藥品結構 18
3-2實驗儀器 20
3-3 ZIT光觸媒的製備方法 22
3-3-1 NiOX/CuOX-ZIT光觸媒的製備方法 22
3-4光催化反應-吸附苯酚實驗步驟 26
3-4-1苯酚溶液配製 26
3-4-2吸附條件測試 26
3-5光催化苯酚降解實驗 27
3-5-1紫外光降解苯酚實驗 27
3-5-2藍光降解苯酚實驗 28
第四章 光觸媒的鑑定與討論 32
4-1光觸媒之合成探討-部分電荷模型理論 32
4-2 NiOX/CuOX-ZIT光觸媒性質鑑定 33
4-2-1 P-XRD鑑定與分析 33
4-2-1-1 ZIT不同鍛燒溫度晶相變化 33
4-2-1-2 NiOX/CuOX-ZIT不同披覆量晶相變化 36
4-2-2 固態FT-IR的鑑定 42
4-2-2-1 ZIT不同鍛燒溫度FTIR光譜圖 42
4-2-2-2 NiOX/CuOX-ZIT光觸媒之FTIR光譜圖 44
4-2-3 TEM鑑定與分析 45
4-2-4 SEM的鑑定與分析 53
4-2-5 BET比表面積分析與孔徑測定 56
4-2-5-1 ZIT鍛燒溫度與比表面積的變化 59
4-2-5-2 NiOX/CuOX-ZIT不同金屬批覆量比表面積的變化 59
4-2-6 XPS的鑑定與分析 65
4-2-7 UV-Vis DRS的鑑定與分析 72
4-2-8 理論計算 74
第五章 光催化活性探討 78
5-1苯酚自身光降解反應 78
5-2光觸媒催化活性鑑定-降解苯酚 80
5-2-1 ZIT鍛燒溫度對催化活性影響探討 80
5-2-2 UV光照射下苯酚催化活性探討 82
5-2-2-1鎳系列披覆量對催化活性影響 82
5-2-2-2銅系列披覆量對催化活性影響 83
5-2-3 BL光照射下苯酚催化活性探討 84
5-2-3-1鎳系列披覆量對催化活性影響 84
5-2-3-2銅系列披覆量對催化活性影響 85
5-2-4光降解總整理 86
5-4 NMR產物分析 93
第六章 結論 97
參考文獻 98
(1) Gupta, S.; Tripathi, M. Chin. Sci. Bull. 2011, 56, 1639.
(2) Mo, S.-D.; Ching, W. Y. Physical Review B 1995, 51, 13023.
(3) Chen, X.; Mao, S. S. Chemical Reviews 2007, 107, 2891.
(4) Diebold, U. Surface Science Reports 2003, 48, 53.
(5) Hanaor, D. H.; Sorrell, C. J Mater Sci 2011, 46, 855.
(6) Shockley, W. Bell System Technical Journal 1949, 28, 435.
(7) Shifu, C.; Sujuan, Z.; Wei, L.; Wei, Z. Journal of Hazardous Materials 2008, 155, 320.
(8) Yu, J.; Wang, W.; Cheng, B. Chemistry – An Asian Journal 2010, 5, 2499.
(9) Chen, C.-J.; Liao, C.-H.; Hsu, K.-C.; Wu, Y.-T.; Wu, J. C. S. Catalysis Communications 2011, 12, 1307.
(10) Lee, Y.-M.; Lai, C.-H. Solid-State Electronics 2009, 53, 1116.
(11) Khun, K.; Ibupoto, Z. H.; Willander, M. physica status solidi (a) 2013, 210, 2720.
(12) Ren, L.; Zeng, Y.-P.; Jiang, D. Solid State Sciences 2010, 12, 138.
(13) Paxton, A. T.; Thiên-Nga, L. Physical Review B 1998, 57, 1579.
(14) Sanjinés, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Lévy, F. Journal of Applied Physics 1994, 75, 2945.
(15) Gandhi, V.; Mishra, M.; Joshi, P. In Materials Science Forum 2012; Vol. 712, p 175.
(16) Okamoto, K.-i.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Bulletin of the Chemical Society of Japan 1985, 58, 2015.
(17) Zaleska, A. Recent Patents on Engineering 2008, 2, 157.
(18) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chemical Reviews 1995, 95, 69.
(19) Xin, B.; Ren, Z.; Wang, P.; Liu, J.; Jing, L.; Fu, H. Applied Surface Science 2007, 253, 4390.
(20) Rupa, A. V.; Divakar, D.; Sivakumar, T. Catal Lett 2009, 132, 259.
(21) Diwald, O.; Thompson, T. L.; Zubkov, T.; Walck, S. D.; Yates, J. T. The Journal of Physical Chemistry B 2004, 108, 6004.
(22) Tauster, S. J.; Fung, S. C.; Garten, R. L. Journal of the American Chemical Society 1978, 100, 170.
(23) MurdochM; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; LlorcaJ; IdrissH Nat Chem 2011, 3, 489.
(24) Chiarello, G. L.; Aguirre, M. H.; Selli, E. Journal of Catalysis 2010, 273, 182.
(25) Rosseler, O.; Shankar, M. V.; Du, M. K.-L.; Schmidlin, L.; Keller, N.; Keller, V. Journal of Catalysis 2010, 269, 179.
(26) Ye, M.; Gong, J.; Lai, Y.; Lin, C.; Lin, Z. Journal of the American Chemical Society 2012, 134, 15720.
(27) Mizukoshi, Y.; Makise, Y.; Shuto, T.; Hu, J.; Tominaga, A.; Shironita, S.; Tanabe, S. Ultrasonics Sonochemistry 2007, 14, 387.
(28) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renewable and Sustainable Energy Reviews 2007, 11, 401.
(29) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. The Journal of Physical Chemistry Letters 2010, 1, 48.
(30) Bradford, M. C. J.; Vannice, M. A. Catal Lett 1997, 48, 31.
(31) Novák, É.; Fodor, K.; Szailer, T.; Oszkó, A.; Erdöhelyi, A. Topics in Catalysis 2002, 20, 107.
(32) Tóth, M.; Kiss, J.; Oszkó, A.; Pótári, G.; László, B.; Erdőhelyi, A. Topics in Catalysis 2012, 55, 747.
(33) Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y.-P. Green Chemistry 2005, 7, 667.
(34) Ao, Y.; Xu, J.; Zhang, S.; Fu, D. Applied Surface Science 2010, 256, 2754.
(35) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. science 2001, 293, 269.
(36) Sathish, M.; Viswanathan, B.; Viswanath, R. P.; Gopinath, C. S. Chemistry of Materials 2005, 17, 6349.
(37) Sakthivel, S.; Janczarek, M.; Kisch, H. The Journal of Physical Chemistry B 2004, 108, 19384.
(38) Tang, X.; Li, D. The Journal of Physical Chemistry C 2008, 112, 5405.
(39) Hirakawa, T.; Nosaka, Y. The Journal of Physical Chemistry C 2008, 112, 15818.
(40) Liu, H.; Gao, L. Journal of the American Ceramic Society 2004, 87, 1582.
(41) Quan, X.; Tan, H.; Zhao, Q.; Sang, X. J Mater Sci 2007, 42, 6287.
(42) Lukáč, J.; Klementová, M.; Bezdička, P.; Bakardjieva, S.; Šubrt, J.; Szatmáry, L.; Grusková, A. J Mater Sci 2007, 42, 9421.
(43) Su, C.; Hong, B. Y.; Tseng, C. M. Catalysis Today 2004, 96, 119.
(44) Zhu, Y.; Zhang, L.; Gao, C.; Cao, L. J Mater Sci 2000, 35, 4049.
(45) Di Paola, A.; Marcì, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. The Journal of Physical Chemistry B 2002, 106, 637.
(46) Tayade, R. J.; Kulkarni, R. G.; Jasra, R. V. Industrial &; Engineering Chemistry Research 2006, 45, 5231.
(47) Patterson, A. Physical review 1939, 56, 978.
(48) West, A. R. Basic solid state chemistry; John Wiley &; Sons Inc, 1999.
(49) Sim, L. C.; Ng, K. W.; Ibrahim, S.; Saravanan, P. International Journal of Photoenergy 2013, 2013.
(50) Paul, S.; Choudhury, A.; Bojja, S. Micro &; Nano Letters, IET 2013, 8, 184.
(51) López, R.; Gómez, R.; Llanos, M. E. Catalysis Today 2009, 148, 103.
(52) Nishikiori, H.; Sato, T.; Kubota, S.; Tanaka, N.; Shimizu, Y.; Fujii, T. Research on Chemical Intermediates 2012, 38, 595.
(53) Wu, C.-G.; Chao, C.-C.; Kuo, F.-T. Catalysis Today 2004, 97, 103.
(54) Zhou, J.; Zhang, Y.; Zhao, X. S.; Ray, A. K. Industrial &; Engineering Chemistry Research 2006, 45, 3503.
(55) Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. Journal of Materials Chemistry 2010, 20, 5301.
(56) Zhou, K.; Zhu, Y.; Yang, X.; Jiang, X.; Li, C. New Journal of Chemistry 2011, 35, 353.
(57) Vasconcelos, D. C. L.; Nunes, E. H. M.; Gasparon, M.; Vasconcelos, W. L. Materials Sciences and Applications 2011, 2, 1375.
(58) Sui, R.; Rizkalla, A. S.; Charpentier, P. A. The Journal of Physical Chemistry B 2006, 110, 16212.
(59) Buckley, P.; Giguère, P. A. Canadian Journal of Chemistry 1967, 45, 397.
(60) Soria, J.; Sanz, J.; Sobrados, I.; Coronado, J. M.; Maira, A. J.; Hernández-Alonso, M. D.; Fresno, F. The Journal of Physical Chemistry C 2007, 111, 10590.
(61) Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Langmuir 2001, 17, 2664.
(62) Li, S.; Ye, G.; Chen, G. The Journal of Physical Chemistry C 2009, 113, 4031.
(63) Ivanda, M.; Musić, S.; Popović, S.; Gotić, M. Journal of Molecular Structure 1999, 480–481, 645.
(64) Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. The Journal of Physical Chemistry 1996, 100, 3625.
(65) Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Kasetsart J.(Nat. Sci.) 2008, 42, 357.
(66) Suprabha, T.; Roy, H. G.; Thomas, J.; Kumar, K. P.; Mathew, S. Nanoscale research letters 2009, 4, 144.
(67) Dai, S.; Wu, Y.; Sakai, T.; Du, Z.; Sakai, H.; Abe, M. Nanoscale research letters 2010, 5, 1829.
(68) Su, D.; Ford, M.; Wang, G. Scientific reports 2012, 2.
(69) Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Amghouz, Z.; Fuertes, A. B.; Barquín, L. F.; de Pedro, I.; Olivi, L.; Blanco, J. A. Journal of Materials Chemistry C 2015, 3, 5674.
(70) Rakshit, S.; Ghosh, S.; Chall, S.; Mati, S. S.; Moulik, S.; Bhattacharya, S. C. RSC Advances 2013, 3, 19348.
(71) Wang, Z.; Zhao, S.; Zhu, S.; Sun, Y.; Fang, M. CrystEngComm 2011, 13, 2262.
(72) Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H. Nanoscale 2014, 6, 8704.
(73) Xue, J.; Liang, W.; Liu, X.; Shen, Q.; Xu, B. CrystEngComm 2012, 14, 8017.
(74) Gregg, S. J.; Sing, K. S. W.; Salzberg, H. Journal of The Electrochemical Society 1967, 114, 279C.
(75) Sing, K. S. Pure and applied chemistry 1985, 57, 603.
(76) Francisco, M. S. P.; Mastelaro, V. R.; Nascente, P. A. P.; Florentino, A. O. The Journal of Physical Chemistry B 2001, 105, 10515.
(77) Wang, E.; Yang, W.; Cao, Y. The Journal of Physical Chemistry C 2009, 113, 20912.
(78) Kumaresan, L.; Mahalakshmi, M.; Palanichamy, M.; Murugesan, V. Industrial &; Engineering Chemistry Research 2010, 49, 1480.
(79) Couselo, N.; García Einschlag, F. S.; Candal, R. J.; Jobbágy, M. The Journal of Physical Chemistry C 2008, 112, 1094.
(80) Reddy, B. M.; Sreekanth, P. M.; Yamada, Y.; Xu, Q.; Kobayashi, T. Applied Catalysis A: General 2002, 228, 269.
(81) Navio, J.; Colón, G. Studies in Surface Science and Catalysis 1994, 82, 721.
(82) Shinde, V. M.; Madras, G. RSC Advances 2014, 4, 4817.
(83) Dolat, D.; Ohtani, B.; Mozia, S.; Moszyński, D.; Guskos, N.; Lendzion-Bieluń, Z.; Morawski, A. Chemical Engineering Journal 2014, 239, 149.
(84) Colon, G.; Maicu, M.; Hidalgo, M. s.; Navio, J. Applied Catalysis B: Environmental 2006, 67, 41.
(85) Moosavi, E. S.; Dastgheib, S. A.; Karimzadeh, R. Energies 2012, 5, 4233.
(86) Fuerte, A.; Hernández-Alonso, M.; Maira, A.; Martinez-Arias, A.; Fernandez-Garcia, M.; Conesa, J.; Soria, J. Chemical Communications 2001, 2718.
(87) Kakuta, S.; Abe, T. Electrochemical and Solid-State Letters 2009, 12, P1.
(88) Boschloo, G.; Hagfeldt, A. The Journal of Physical Chemistry B 2001, 105, 3039.
(89) Wang, X.; Song, J.; Gao, L.; Jin, J.; Zheng, H.; Zhang, Z. Nanotechnology 2005, 16, 37.
(90) Jin, Q.; Ikeda, T.; Fujishima, M.; Tada, H. Chemical Communications 2011, 47, 8814.
(91) Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Angewandte Chemie International Edition 2008, 47, 1766.
(92) Zhang, J.; Yan, S.; Fu, L.; Wang, F.; Yuan, M.; Luo, G.; Xu, Q.; Wang, X.; Li, C. Chinese Journal of Catalysis 2011, 32, 983.
(93) Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. International journal of hydrogen energy 2005, 30, 1053.
(94) Ahmed, M. Journal of Photochemistry and Photobiology A: Chemistry 2012, 238, 63.
(95) Wu, N.-L.; Lee, M.-S. International Journal of Hydrogen Energy 2004, 29, 1601.
(96) Jin, Q.; Fujishima, M.; Iwaszuk, A.; Nolan, M.; Tada, H. The Journal of Physical Chemistry C 2013, 117, 23848.
(97) Xu, Y.-h.; Liang, D.-h.; Liu, D.-z. Materials Research Bulletin 2008, 43, 3474.
(98) Xia, X.; Gao, Y.; Wang, Z.; Jia, Z. Journal of Physics and Chemistry of Solids 2008, 69, 2888.
(99) Song, K.; Zhou, J.; Bao, J.; Feng, Y. Journal of the American Ceramic Society 2008, 91, 1369.
(100) Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Catalysis Communications 2005, 6, 313.
(101) Fu, X.; Clark, L. A.; Yang, Q.; Anderson, M. A. Environmental science &; technology 1996, 30, 647.
(102) Ohno, T.; Murakami, N.; Tsubota, T.; Nishimura, H. Applied Catalysis A: General 2008, 349, 70.
(103) Okamoto, K.-i.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Bulletin of the Chemical Society of Japan 1985, 58, 2015.
(104) Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Langmuir 2003, 19, 3151.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊