1. 吳三生 (2014) ,「多含水層系統地下水位洩降引發土壤壓密黏彈塑性數值模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。2. 李王勝 (2011) ,「多含水層系統地下水位洩降引發土壤壓密黏彈性數值模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。3. 林仙蕓 (2008) ,「降雨引發坡地淺崩塌之區域性風險分析研究」,國立交通大學土木工程學研究所,碩士論文。4. 林業勳 (2014) ,「多含水層系統黏彈塑性地層下陷數值模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。5. 凃文俊 (2012) ,「不同點估計法對降雨無限邊坡破壞機率模擬之比較研究」,國立嘉義大學土木與水資源工程學研究所,碩士論文。6. 姚榮昇 (2014),「每月平均日計費計量水量預測模型之建立」,國立臺北科技大學土木與防災研究所,碩士論文。7. 張文忠 (1998),「隨機過程-原理及題解」。
8. 許永佳 (2002),「水壩溢流之風險分析-以翡翠水庫為例」,國立臺灣大學土木工程學研究所,碩士論文。9. 陳信彰 (1996),「分布型降雨-逕流模式之不確定性與敏感度分析」,國立成功大學水利及海洋工程學研究所,碩士論文10. 陳倫存 (2012) ,「降雨引發坡地淺崩塌機率模式之建立」,國立嘉義大學土木與水資源工程學研究所,碩士論文。11. 楊子葳 (2015) ,「年度滾動式地層下陷機率預測模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。
12. 楊沛璋 (2011) ,「利用Rosenblueth點估計建立考量土壤參數不確定性之降雨引發無限邊坡破壞機率模式」,國立嘉義大學土木與水資源工程學研究所,碩士論文。
13. 歐佳昇 (2015) ,「考量土壤參數不確定性之多含水層系統黏彈塑性地層下陷機率模式之建立與測試」,國立嘉義大學土木與水資源工程研究所,碩士論文。14. 蘇歆婷 (2007) ,「降雨引發坡地淺崩塌風險評估模式之建立與應用」,國立交通大學土木工程學研究所,碩士論文。15. Bardet, J. P., (1992). “Viscoelastic Model for the Dynamic Behavior of Saturated Poroelastic Soils”, Journal of Applied Mechanics, Vol. 59, pp. 128-135.
16. Bear, J. and Corapcioglu, M.Y.,(1981a). “Mathmatical model for regionalland subsidence due to pumping. I. Integrated aquifer subsidence equations based on vertical displacement only “,WaterResource Research, Vol.17, pp.938-947.
17. Bear, J. and Corapcioglu, M.Y.,(1981b). “Mathematical model for regional landsubsidence due to pumping. I.Integrated aquifer subsidence equations based on vertical and horizontal displacements “,WaterResource Research, Vol.17, pp.947-958.
18. Bear, J., (1972). “Dynamics of Fluids in Porous Media”, Elsevier: New York; 764.
19. Biot, M. A., (1941). “General Theory of Three-Dimensional Consolidation”, Journal of Applied Physics, Vol.12, pp.155-164.
20. Biot, M. A., (1955). “Theory of Elasticity and Consolidation for A Porous Anisotropic Solid”, Journal of Applied Physics, Vol.26, pp.182-185.
21. Borja, R.I. and Karazanjiian, J.E., (1985). “A constitutive model for the stress–strain-time behaviour of wet clays”, Geotechnique, Vol.35, pp.283-298.
22. Chen JC,Jan CD,Lee JM(2007), “Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem” , Environ Geol,51: 1239–1248.
23. Chen, Z.L., Tang, L.L., Niu, S.B., and Yu, C. (2011). “Three-dimensional consolidation of visco-elastic soil around a driven pile”, Applied Mechanics and Materials, Vol.66, pp.1291-1295.
24. Fallou, S. N., Mei, C.C., and Lee, C. K., (1992). “Subsidence due to Pumping from Layered Soil-A Pertubation Theory” , Int. J. Numer. Analyt. Methods. Geomech., Vol.16, pp.157-187.
25. Feng, Y. and Li, J., (2013). “Black analysis of parameters and settlement prediction of Chengdu clay ground considering its creep behavior”, Advanced Materials Reaearch, Vol. 671, pp.23-26.
26. Ferronato, M., Gambolati, G., and Teatini, P., (2001). “Ill-conditioning of finite element poroelasticity equations”, International Journal of Solids and Structures,Vol.38,pp.5995-6014.
27. Fokker, P.A., Orlic, B., (2006). “Semi-Analytic Modelling of Subsidence”, Mathematical Geology, Vol.38, pp.565-589.
28. Freeze RA., Cherry JA., (1979). “ Groundwater”, Prentice-Hall: Englewood Cliffs.
29. Gambolati, G. and Freeze, R. A., (1973). “Mathematical Simulation of the Subsidence of Venice I Theory”, Water Resource Research. Vol. 9, pp.721-733.
30. Gambolati, G., Ricceri, G., Bertoni, W., Brighenti, G., and Vuillermin, E., (1991). “Mathematical Simulation of Subsidence of Ravenna”, Water Resource Research. Vol.27, pp.2899-2918.
31. Gambolati, G., Teatini, P., Baú D., and Ferronato, M., (2000). “Importance of poroelastic coupling in dynamically active aquifers of the Po River Basin, Italy”, Water Resource Research, Vol.36, pp.2443-2459.
32. Garlanger, J.E., (1972). “The consolidation of soil exhibiting creep under constant effective stress”, Geotechnique, Vol.22, pp.71-78.
33. Ghaboussi, J. and Wilson, E.L., (1973). “Flow of compressible fluid in porous elastic media”, International Journal Numerical Method in Engineering, Vol. 5, pp. 419-442.
34. Gibbson, R. E., England, G. L., and Hussey, M. J. L., (1967). “The Theory of One Dimensional Consolidation of Saturated Clays. I Finite Nonlinear Consolidation Of Thick Homogeneous Layer”, Geotechnique, Vol.117, pp.1-273.
35. Guo, W.D., (2000). “Visco-Elastic Consolidation Subsequent to Pile Installation”, Computers and Geotechnics, Vol. 26, pp.113-144.
36. Harr, M. E. (1987) , Reliability-Based Design in Civil Engineering, Mc-Graw-Hill, New York.
37. Helm, D. C., (1975). “One Dimensional Simulation of Aquifer System Compaction Near Pixey California, 1. Constant Parameter”, Water Resource Research. Vol.11, pp.465-478.
38. Helm, D. C., (1976). “One Dimensional Simulation of Aquifer System Compaction Near Pixey California, 2. Stress-Dependent Parameter”, Water Resource Research. Vol.12, pp.375-391.
39. Hong HP. (1996), “Point-estimate moment-based reliability analysis” Civil Engineering Systems, 13(4):281-294.
40. Hong HP. (1998), “An efficient point estimate method for probabilistic analysis” Relibility Engineering and System Safety, 59(3):261-267.
41. Hsieh, P.C. and Hsieh, W.P., (2007). “Dynamic Analysis of Multilayered Soils to Water Waves and Flow”, Journal of Engineering Mechanics, Vol. 133, pp. 357-366.
42. Hsieh, P.C., (2006). “A viscoelastic model for the dynamic response of soils to periodical surface water disturbance,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, pp. 1201-1212.
43. Jacob, C. E., (1940). “The Flow of Water in the Elastic Artesian Aquifer”, Eos Trans. AGU, Vol.21, pp.574-586.
44. Jacob, C. E., (1950). “Flow of Ground-Water”, in Engineering Hydraulics, edited by H. Rouse, John Wiley, New York, pp.321-386.
45. Janbu, N., (1985). “Twenty-fifth Rankine lecture: soil models in offshore engineering”, Geotechnique, Vol.35, pp.239-282.
46. Kihm, J.H., Kim, J.M., Song, S.H., and Lee, G.S., (2007). “Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system”, Journal Hydrology, Vol.335, pp.1-14.
47. Kim, J.M., (2005). “Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping”, Water Resource Research, Vol.40.
48. Kovacik J., (2008). “Correlation between Elastic Modulus, Shear Modulus, Poisson’s Ratio and Porosity in Porous Materials”, Advanced Engineering Materials, Vol.10(3): 250-252.
49. Lewis, R. W. and Schrefler, B., (1978). “A Fully Coupled Consolidation Model of the Subsidence of Venice”, Water Resource Research. Vol.14, 223-230.
50. Lewis, R. W., and Schrefler, B. A., (1991). “ Coupling versus Uncoupling in Soil Consolidation”, Int. J.Numer. Anal. Methods Geomech., Vol.15, pp.533-548.
51. Li KS. (1992), “Point-Estimate Method for Calculating Statistical Moments” , Journal of Engineering Mechanics,ASCE,118(7): 1506-1511.
52. Liu, J.C., Lei, G.G., and Wei, G.X., (2012). “One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater”, Journal Cent South Univiversity, Vol.19, pp.282-286.
53. Liu, Y. and Helm, D.C., (2008a). “Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. Methods”, Water Resourrce Research, Vol.44. 43.
54. Liu, Y., Helm, D.C., (2008b). “Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 2. Field application”, Water Resource Research, Vol.44.
55. Luo, Z.J. and Zeng, F., (2011). “Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elastic-plastic Biot’s consolidation theory”, Journal of Hydrodynamics, Vol. 23, pp.615-624.
56. Mei, C. C. , (1985). “Gravity Effect in Consolidation of Layer of Soft Soil”, ASCE Journal of Eng. Mech., pp.1038-1047.
57. Mishra, S. K., Singh, R.P., and Chandra, S., (1993). “Prediction of Subsidence in the Indo-gangetic Basin Carried by Groundwater Withdrawal”, Engineering Geology Vol.33, pp.227-239.
58. Neuman, S. P., Preller, C., and Narasimhan, T.N., (1982). “Adaptive Explicit-Implicit Quasi Three-Dimensional Finite Element Model of Flow and Subsidence in Multiaquifer Systems”, Water Resource Research. Vol.18, pp.1151-1561.
59. Phani KK, Sanyal D., (2005). “Critical Reevaluation of the Prediction of Effective Poisson’s Ratio for Porous Materials”, Journal of Materials Science Vol.40, pp.5685-5690.
60. Safai, N. M., and Pinder, G. F., (1979). “Vertical and Horizontal Land Deformation in a Desaturating Porous Medium”, Advances in Water Resources, Vol.2, pp.19-26.
61. Safai, N. M., and Pinder, G. F., (1980). “Vertical and Horizontal Land Deformation due to Water Withdraw”, Int. J. Numer. Analysis Mech. Geomech., pp.132-142.
62. Shi, X., Wu, J., Ye, S., Zang, Y., Xue, Y., Wei, Z., Li, Q., and Yu, J., (2008). “Regional land subsidence simulation in Su-Xi-Chang area and Shanghai city, China”, Engineering Geology, Vol.100, pp.27-42.
63. Shi, X., Wu, J., Ye, S., Zang, Y., Xue, Y., Wei, Z., Li, Q., Yu, J, (2008). “Regional Land Subsidence Simulation in Su-Xi-Chang Area and Shanghai City, China”, Engineering Geology, Vol.100, pp.27-42.
64. Singh, R.P. and Yadav, R.N., (1995). “Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India”, Engineering Geology, Vol.39, pp.103-111.
65. Sloan, S.W. and Abbo, A.J., (1999). “Biot consolidation analysis with automatic time stepping and error control. part 1 : theory and implementation”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 467-492.
66. Tarn, J. Q., and Lu, C. C., (1991). “Analysis of Subsidence due to a Point Sink in an Anisotropic Porous Elastic Half Space”, Int. J. Numer. Analyt Mech. Geomech., Vol.15, pp.573-592.
67. Terzaghi, K., (1925). “Erdbaumechanic Auf Bodenphysikalisher Grundlage”, Franz Deuticke, Vienna.
68. Theis, C. V., (1938). “The Significance and Nature of the Cone of Depression in Groundwater Bodies”, Geo., Vol.33, pp.889-920.
69. Tsai TL, Jang WS,(2014) Deformation Effects of Porosity Variation on Soil Consolidation Caused by Groundwater Table Decline, Environmental Earth Sciences, Vol.72(3), pp.829-838.
70. Tsai, T. L., (2009). “Viscosity Effect on Consolidation of Poroelastic Soil due to Groundwater Table Depression” Environmental Geology, Vol.57(5), pp.1055-1064.
71. Tsai, T. L., Chiang, K. C., and Huang, L. H., (2006). “Body Force Effect on Porous Elastic Media due to Pumping”, Journal of the Chinese Institute of Engineers, Vol.29(1), pp. 75-82.
72. Tseng. C. M., Tsai, T. L., and Huang, L. H., (2008). “Effects of Body Force on Transient Poroelastic Consolidation due to Groundwater Pumping”, Environmental Geology, Vol.54(7), pp.1507-1516.
73. Tung YK, Yen BC (2005), “Hydrosystems Engineering Uncertainty Analysis”, The McGraw-Hill Companies, Inc., New York.
74. Van Genuchten (1980), “A closed-form equation for predicting hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. Am. J., 44: 892-898.
75. Verruijt, A., (1969). “Elastic Storage of Aquifers in Flow Through Porous Media”, edited by R. J. M. Dewiest, pp.331-376, Academic, New York.
76. Viladkar, M. N., Sharama, R. P., and Ranjan G., (1992). “Viscoelastic Finite Element Formulation for Isolated Foundations on Clays”, Computers and Structures, Vol.43(2), pp.313-324.
77. Wadachi, K., (1940). “Ground Sinking in West Osaka”, Report Disaster Prevention Research Institute, No.3.
78. Wang S.J., Hsu K.C., (2009). “Dynamics of Deformation and Water Flow in Heterogeneous Porous Media and Its Impact on Soil Properties”, Hydrological processes, Vol. 23, pp. 3569-3582.
79. Wei, L.M., Wang, H.G., and He, X.G., (2007). “Method for determining the parameters in visco-elastic-plastic model”, In: Proceedings of an international conference on geotechnical engineering. Changsha.
80. Wu, S.J., Tung, Y.K., and Yang, J.C., (2006) .“Stochastic generation of hourly rainstorm events”, Vol.21, pp. 195-212.
81. Xue, Y.Q., Zhang, Y., Ye, S.J., Wu, J.C., and Li, Q.F., (2005). “Land subsidence in China”, Engineering Geology, Vol.48, pp.713-720.
82. Ye, S., Xue, Y., Wu, J., and Li, Q., (2012). “Modeling Visco-elastic-plastic Deformation of Soil with Modified Merchant Model”, Environmental Earth Sciences, Vol.66, pp.1497-1504.
83. Ye, S.J., (2004). “Study on the regional land subsidence model and its application”, Dissertation, Nanjing University (in Chinese).
84. Ye, S.J., Xue, Y.Q., Wu, J.C., Zhang, Y., Wei, Z.X., and Li, Q.F., (2011). “Regional land subsidence model embodying complex deformation”, Proceedings of the ICE-Water Management, 164(10), pp. 519-531.
85. Ye, S.J., Xue, Y.Q., Zhang, Y., Li, Q.F., and Wang, H.M., (2005). “Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai, Chin” (in Chinese), Journalof Geotechnique Engineering, Vol.27, pp.140-147.
86. Yeh, H. D., Lu, R. H., and Yeh, G. T., (1995). “Finite Element Modeling for Land Displacements Due to Pumping”, Int. J. Numer. Anal. Method. Geomech., Vol.19, pp.573-592.
87. Yin, J.H. and Graham, J., (1996). “Elastic visco-plastic modelling of one-dimensional consolidation”, Geotechnique, Vol.46, pp.515-527.