跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉偉杉
論文名稱:即時性地層下陷機率預測模式之建立
論文名稱(外文):Development of Real-time Probability Assessment Model for Landsubsidence
指導教授:蔡東霖蔡東霖引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:土木與水資源工程學系研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
中文關鍵詞:地層下陷機率即時性
相關次數:
  • 被引用被引用:2
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究根據各含水層歷年各月份月平均分層地下水位資料,藉由時間序列ARIMA模型,推估未來分層地下水位,並結合土壤參數隨機變數取樣,利用已發展完成之多含水層系統黏彈塑性地層下陷定率數值模式及蒙地卡羅模擬法,建立即時性地層下陷機率預測模式。模式建立後,利用簡單拘限多含水層系統案例,分別進行模式推估單站及區域性地層下陷機率之測試。結果顯示,即時性地層下陷機率預測模式可合理地即時預測未來地層下陷潛勢,以提供做為地下水及地層下陷即時預警管理之用。
摘要 I
目錄 Ⅱ
Abstract Ⅲ
致謝 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
符號說明 Ⅷ
第一章 緒論 1
1.1 緣起與目的 1
1.2文獻回顧 3
1.3方法與步驟 11
1.4章節介紹 12
第二章 多含水層系統黏彈塑性地層下陷定率數值模式簡介 14
2.1理論基礎 14
2.2控制方程式 16
2.3初始條件及邊界條件 20
第三章 即時性地層下陷機率預測模式之建立 23
3.1所需輸入資料說明 23
3.2多含水層系統黏彈塑性地層下陷機率數值模式簡介 24
3.3即時性地層下陷機率預測模式之建立 26
第四章 即時性地層下陷機率預測模式之測試 29
4.1測試案例說明 29
4.2單站模擬測試 29
4.3區域模擬測試 31
第五章 結論與建議 33
5.1結論 33
5.2建議 35
參考文獻 36
附錄A時間序列 ARIMA方程式簡介 72

表目錄
表4.1拘限多含水層系統土壤參數表 45
表4.2芳草站預測水位之超越機率下陷量 46
表4.3虎尾站預測水位之超越機率下陷量 47

圖目錄
圖1.1研究流程圖 48
圖2.1多含水層系統示意圖 49
圖2.2一維黏彈性壓密本構關係示意圖 50
圖2.3彈簧應力應變關係圖 51
圖3.1多含水層系統黏彈塑性地層下陷機率模式建立之步驟流程 52
圖3.2即時性地層下陷機率預測模式建立之步驟流程 53
圖3.3時間序列法推估未來水位之示意圖 54
圖3.4芳草與虎尾站水位歷程圖 55
圖3.5芳草站與虎尾站案例實際與預測水位示意圖 56
圖4.1拘限多含水層系統示意圖 57
圖4.2芳草站案例不同機率之地層下陷超越量 58
圖4.3虎尾站案例不同機率之地層下陷超越量 59
圖4.4區域性模擬示意圖 60
圖4.5海園站等其他測站水位歷程圖 61
圖4.6區域模擬案例不同機率之地層下陷超越量 66
1. 吳三生 (2014) ,「多含水層系統地下水位洩降引發土壤壓密黏彈塑性數值模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。
2. 李王勝 (2011) ,「多含水層系統地下水位洩降引發土壤壓密黏彈性數值模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。
3. 林仙蕓 (2008) ,「降雨引發坡地淺崩塌之區域性風險分析研究」,國立交通大學土木工程學研究所,碩士論文。
4. 林業勳 (2014) ,「多含水層系統黏彈塑性地層下陷數值模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。
5. 凃文俊 (2012) ,「不同點估計法對降雨無限邊坡破壞機率模擬之比較研究」,國立嘉義大學土木與水資源工程學研究所,碩士論文。
6. 姚榮昇 (2014),「每月平均日計費計量水量預測模型之建立」,國立臺北科技大學土木與防災研究所,碩士論文。

7. 張文忠 (1998),「隨機過程-原理及題解」。
8. 許永佳 (2002),「水壩溢流之風險分析-以翡翠水庫為例」,國立臺灣大學土木工程學研究所,碩士論文。
9. 陳信彰 (1996),「分布型降雨-逕流模式之不確定性與敏感度分析」,國立成功大學水利及海洋工程學研究所,碩士論文
10. 陳倫存 (2012) ,「降雨引發坡地淺崩塌機率模式之建立」,國立嘉義大學土木與水資源工程學研究所,碩士論文。
11. 楊子葳 (2015) ,「年度滾動式地層下陷機率預測模式之建立」,國立嘉義大學土木與水資源工程研究所,碩士論文。
12. 楊沛璋 (2011) ,「利用Rosenblueth點估計建立考量土壤參數不確定性之降雨引發無限邊坡破壞機率模式」,國立嘉義大學土木與水資源工程學研究所,碩士論文。
13. 歐佳昇 (2015) ,「考量土壤參數不確定性之多含水層系統黏彈塑性地層下陷機率模式之建立與測試」,國立嘉義大學土木與水資源工程研究所,碩士論文。
14. 蘇歆婷 (2007) ,「降雨引發坡地淺崩塌風險評估模式之建立與應用」,國立交通大學土木工程學研究所,碩士論文。
15. Bardet, J. P., (1992). “Viscoelastic Model for the Dynamic Behavior of Saturated Poroelastic Soils”, Journal of Applied Mechanics, Vol. 59, pp. 128-135.
16. Bear, J. and Corapcioglu, M.Y.,(1981a). “Mathmatical model for regionalland subsidence due to pumping. I. Integrated aquifer subsidence equations based on vertical displacement only “,WaterResource Research, Vol.17, pp.938-947.
17. Bear, J. and Corapcioglu, M.Y.,(1981b). “Mathematical model for regional landsubsidence due to pumping. I.Integrated aquifer subsidence equations based on vertical and horizontal displacements “,WaterResource Research, Vol.17, pp.947-958.
18. Bear, J., (1972). “Dynamics of Fluids in Porous Media”, Elsevier: New York; 764.

19. Biot, M. A., (1941). “General Theory of Three-Dimensional Consolidation”, Journal of Applied Physics, Vol.12, pp.155-164.
20. Biot, M. A., (1955). “Theory of Elasticity and Consolidation for A Porous Anisotropic Solid”, Journal of Applied Physics, Vol.26, pp.182-185.
21. Borja, R.I. and Karazanjiian, J.E., (1985). “A constitutive model for the stress–strain-time behaviour of wet clays”, Geotechnique, Vol.35, pp.283-298.
22. Chen JC,Jan CD,Lee JM(2007), “Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem” , Environ Geol,51: 1239–1248.
23. Chen, Z.L., Tang, L.L., Niu, S.B., and Yu, C. (2011). “Three-dimensional consolidation of visco-elastic soil around a driven pile”, Applied Mechanics and Materials, Vol.66, pp.1291-1295.
24. Fallou, S. N., Mei, C.C., and Lee, C. K., (1992). “Subsidence due to Pumping from Layered Soil-A Pertubation Theory” , Int. J. Numer. Analyt. Methods. Geomech., Vol.16, pp.157-187.
25. Feng, Y. and Li, J., (2013). “Black analysis of parameters and settlement prediction of Chengdu clay ground considering its creep behavior”, Advanced Materials Reaearch, Vol. 671, pp.23-26.
26. Ferronato, M., Gambolati, G., and Teatini, P., (2001). “Ill-conditioning of finite element poroelasticity equations”, International Journal of Solids and Structures,Vol.38,pp.5995-6014.
27. Fokker, P.A., Orlic, B., (2006). “Semi-Analytic Modelling of Subsidence”, Mathematical Geology, Vol.38, pp.565-589.
28. Freeze RA., Cherry JA., (1979). “ Groundwater”, Prentice-Hall: Englewood Cliffs.
29. Gambolati, G. and Freeze, R. A., (1973). “Mathematical Simulation of the Subsidence of Venice I Theory”, Water Resource Research. Vol. 9, pp.721-733.
30. Gambolati, G., Ricceri, G., Bertoni, W., Brighenti, G., and Vuillermin, E., (1991). “Mathematical Simulation of Subsidence of Ravenna”, Water Resource Research. Vol.27, pp.2899-2918.
31. Gambolati, G., Teatini, P., Baú D., and Ferronato, M., (2000). “Importance of poroelastic coupling in dynamically active aquifers of the Po River Basin, Italy”, Water Resource Research, Vol.36, pp.2443-2459.
32. Garlanger, J.E., (1972). “The consolidation of soil exhibiting creep under constant effective stress”, Geotechnique, Vol.22, pp.71-78.
33. Ghaboussi, J. and Wilson, E.L., (1973). “Flow of compressible fluid in porous elastic media”, International Journal Numerical Method in Engineering, Vol. 5, pp. 419-442.
34. Gibbson, R. E., England, G. L., and Hussey, M. J. L., (1967). “The Theory of One Dimensional Consolidation of Saturated Clays. I Finite Nonlinear Consolidation Of Thick Homogeneous Layer”, Geotechnique, Vol.117, pp.1-273.
35. Guo, W.D., (2000). “Visco-Elastic Consolidation Subsequent to Pile Installation”, Computers and Geotechnics, Vol. 26, pp.113-144.
36. Harr, M. E. (1987) , Reliability-Based Design in Civil Engineering, Mc-Graw-Hill, New York.
37. Helm, D. C., (1975). “One Dimensional Simulation of Aquifer System Compaction Near Pixey California, 1. Constant Parameter”, Water Resource Research. Vol.11, pp.465-478.
38. Helm, D. C., (1976). “One Dimensional Simulation of Aquifer System Compaction Near Pixey California, 2. Stress-Dependent Parameter”, Water Resource Research. Vol.12, pp.375-391.
39. Hong HP. (1996), “Point-estimate moment-based reliability analysis” Civil Engineering Systems, 13(4):281-294.
40. Hong HP. (1998), “An efficient point estimate method for probabilistic analysis” Relibility Engineering and System Safety, 59(3):261-267.
41. Hsieh, P.C. and Hsieh, W.P., (2007). “Dynamic Analysis of Multilayered Soils to Water Waves and Flow”, Journal of Engineering Mechanics, Vol. 133, pp. 357-366.
42. Hsieh, P.C., (2006). “A viscoelastic model for the dynamic response of soils to periodical surface water disturbance,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, pp. 1201-1212.
43. Jacob, C. E., (1940). “The Flow of Water in the Elastic Artesian Aquifer”, Eos Trans. AGU, Vol.21, pp.574-586.
44. Jacob, C. E., (1950). “Flow of Ground-Water”, in Engineering Hydraulics, edited by H. Rouse, John Wiley, New York, pp.321-386.
45. Janbu, N., (1985). “Twenty-fifth Rankine lecture: soil models in offshore engineering”, Geotechnique, Vol.35, pp.239-282.
46. Kihm, J.H., Kim, J.M., Song, S.H., and Lee, G.S., (2007). “Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system”, Journal Hydrology, Vol.335, pp.1-14.
47. Kim, J.M., (2005). “Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping”, Water Resource Research, Vol.40.
48. Kovacik J., (2008). “Correlation between Elastic Modulus, Shear Modulus, Poisson’s Ratio and Porosity in Porous Materials”, Advanced Engineering Materials, Vol.10(3): 250-252.
49. Lewis, R. W. and Schrefler, B., (1978). “A Fully Coupled Consolidation Model of the Subsidence of Venice”, Water Resource Research. Vol.14, 223-230.
50. Lewis, R. W., and Schrefler, B. A., (1991). “ Coupling versus Uncoupling in Soil Consolidation”, Int. J.Numer. Anal. Methods Geomech., Vol.15, pp.533-548.
51. Li KS. (1992), “Point-Estimate Method for Calculating Statistical Moments” , Journal of Engineering Mechanics,ASCE,118(7): 1506-1511.
52. Liu, J.C., Lei, G.G., and Wei, G.X., (2012). “One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater”, Journal Cent South Univiversity, Vol.19, pp.282-286.
53. Liu, Y. and Helm, D.C., (2008a). “Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. Methods”, Water Resourrce Research, Vol.44. 43.
54. Liu, Y., Helm, D.C., (2008b). “Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 2. Field application”, Water Resource Research, Vol.44.
55. Luo, Z.J. and Zeng, F., (2011). “Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elastic-plastic Biot’s consolidation theory”, Journal of Hydrodynamics, Vol. 23, pp.615-624.
56. Mei, C. C. , (1985). “Gravity Effect in Consolidation of Layer of Soft Soil”, ASCE Journal of Eng. Mech., pp.1038-1047.
57. Mishra, S. K., Singh, R.P., and Chandra, S., (1993). “Prediction of Subsidence in the Indo-gangetic Basin Carried by Groundwater Withdrawal”, Engineering Geology Vol.33, pp.227-239.
58. Neuman, S. P., Preller, C., and Narasimhan, T.N., (1982). “Adaptive Explicit-Implicit Quasi Three-Dimensional Finite Element Model of Flow and Subsidence in Multiaquifer Systems”, Water Resource Research. Vol.18, pp.1151-1561.
59. Phani KK, Sanyal D., (2005). “Critical Reevaluation of the Prediction of Effective Poisson’s Ratio for Porous Materials”, Journal of Materials Science Vol.40, pp.5685-5690.
60. Safai, N. M., and Pinder, G. F., (1979). “Vertical and Horizontal Land Deformation in a Desaturating Porous Medium”, Advances in Water Resources, Vol.2, pp.19-26.
61. Safai, N. M., and Pinder, G. F., (1980). “Vertical and Horizontal Land Deformation due to Water Withdraw”, Int. J. Numer. Analysis Mech. Geomech., pp.132-142.
62. Shi, X., Wu, J., Ye, S., Zang, Y., Xue, Y., Wei, Z., Li, Q., and Yu, J., (2008). “Regional land subsidence simulation in Su-Xi-Chang area and Shanghai city, China”, Engineering Geology, Vol.100, pp.27-42.
63. Shi, X., Wu, J., Ye, S., Zang, Y., Xue, Y., Wei, Z., Li, Q., Yu, J, (2008). “Regional Land Subsidence Simulation in Su-Xi-Chang Area and Shanghai City, China”, Engineering Geology, Vol.100, pp.27-42.
64. Singh, R.P. and Yadav, R.N., (1995). “Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India”, Engineering Geology, Vol.39, pp.103-111.
65. Sloan, S.W. and Abbo, A.J., (1999). “Biot consolidation analysis with automatic time stepping and error control. part 1 : theory and implementation”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 467-492.
66. Tarn, J. Q., and Lu, C. C., (1991). “Analysis of Subsidence due to a Point Sink in an Anisotropic Porous Elastic Half Space”, Int. J. Numer. Analyt Mech. Geomech., Vol.15, pp.573-592.
67. Terzaghi, K., (1925). “Erdbaumechanic Auf Bodenphysikalisher Grundlage”, Franz Deuticke, Vienna.
68. Theis, C. V., (1938). “The Significance and Nature of the Cone of Depression in Groundwater Bodies”, Geo., Vol.33, pp.889-920.
69. Tsai TL, Jang WS,(2014) Deformation Effects of Porosity Variation on Soil Consolidation Caused by Groundwater Table Decline, Environmental Earth Sciences, Vol.72(3), pp.829-838.
70. Tsai, T. L., (2009). “Viscosity Effect on Consolidation of Poroelastic Soil due to Groundwater Table Depression” Environmental Geology, Vol.57(5), pp.1055-1064.
71. Tsai, T. L., Chiang, K. C., and Huang, L. H., (2006). “Body Force Effect on Porous Elastic Media due to Pumping”, Journal of the Chinese Institute of Engineers, Vol.29(1), pp. 75-82.
72. Tseng. C. M., Tsai, T. L., and Huang, L. H., (2008). “Effects of Body Force on Transient Poroelastic Consolidation due to Groundwater Pumping”, Environmental Geology, Vol.54(7), pp.1507-1516.
73. Tung YK, Yen BC (2005), “Hydrosystems Engineering Uncertainty Analysis”, The McGraw-Hill Companies, Inc., New York.
74. Van Genuchten (1980), “A closed-form equation for predicting hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. Am. J., 44: 892-898.
75. Verruijt, A., (1969). “Elastic Storage of Aquifers in Flow Through Porous Media”, edited by R. J. M. Dewiest, pp.331-376, Academic, New York.
76. Viladkar, M. N., Sharama, R. P., and Ranjan G., (1992). “Viscoelastic Finite Element Formulation for Isolated Foundations on Clays”, Computers and Structures, Vol.43(2), pp.313-324.
77. Wadachi, K., (1940). “Ground Sinking in West Osaka”, Report Disaster Prevention Research Institute, No.3.
78. Wang S.J., Hsu K.C., (2009). “Dynamics of Deformation and Water Flow in Heterogeneous Porous Media and Its Impact on Soil Properties”, Hydrological processes, Vol. 23, pp. 3569-3582.
79. Wei, L.M., Wang, H.G., and He, X.G., (2007). “Method for determining the parameters in visco-elastic-plastic model”, In: Proceedings of an international conference on geotechnical engineering. Changsha.
80. Wu, S.J., Tung, Y.K., and Yang, J.C., (2006) .“Stochastic generation of hourly rainstorm events”, Vol.21, pp. 195-212.
81. Xue, Y.Q., Zhang, Y., Ye, S.J., Wu, J.C., and Li, Q.F., (2005). “Land subsidence in China”, Engineering Geology, Vol.48, pp.713-720.
82. Ye, S., Xue, Y., Wu, J., and Li, Q., (2012). “Modeling Visco-elastic-plastic Deformation of Soil with Modified Merchant Model”, Environmental Earth Sciences, Vol.66, pp.1497-1504.
83. Ye, S.J., (2004). “Study on the regional land subsidence model and its application”, Dissertation, Nanjing University (in Chinese).
84. Ye, S.J., Xue, Y.Q., Wu, J.C., Zhang, Y., Wei, Z.X., and Li, Q.F., (2011). “Regional land subsidence model embodying complex deformation”, Proceedings of the ICE-Water Management, 164(10), pp. 519-531.
85. Ye, S.J., Xue, Y.Q., Zhang, Y., Li, Q.F., and Wang, H.M., (2005). “Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai, Chin” (in Chinese), Journalof Geotechnique Engineering, Vol.27, pp.140-147.
86. Yeh, H. D., Lu, R. H., and Yeh, G. T., (1995). “Finite Element Modeling for Land Displacements Due to Pumping”, Int. J. Numer. Anal. Method. Geomech., Vol.19, pp.573-592.
87. Yin, J.H. and Graham, J., (1996). “Elastic visco-plastic modelling of one-dimensional consolidation”, Geotechnique, Vol.46, pp.515-527.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊