1. 王正雄(1993)白蟻的社會階級。環境檢驗所研究報告季刊 2 (2)。pp.117-128。
2. 王守範(1976)白蟻及其防除方法。台灣林業試驗所。林業叢刊第8號。
3. 朱冠穎(2007)白蟻腸道細菌Clostridium xylanolyticum Ter3之分離及其糖化纖維素與產氫活性分析,國立中興大學碩士論文。4. 吳孟玲(2011)木材腐朽菌PCR快速檢測技術建立。中華林學季刊。44(4):501-516。
5. 吳韋靜(2009)利用白蟻腸內共生菌Clostridium xylanolyticum分解木質纖維素,國立台灣大學碩士論文。6. 李後峰(2010)家白蟻全球分佈與族群遺傳。台灣白蟻生物學及防治研討會暨研習會摘要集。p.18。
7. 林淑娟(2009)白蟻腸道細菌菌相分析與分解木質纖維素菌種之研究,國立中興大學碩士論文。8. 林勝傑、謝瑞忠(2004)植物抽出成分之抗蟻性。林業研究專訊 11(6):27-29。9. 胡愛華(2009)基於FTIR的針闊葉材木質素和纖維素特性。東北林業大學學報37(9):79-90。
10. 徐爾烈(2002)白蟻的生態及習性。古蹟暨木構造白蟻防治研討會論文集 pp.35-41。
11. 徐爾烈(2007)台灣的白蟻種類及危害 China Academic Journal Electronic Publishing House. pp.1~56。
12. 素木得一(1909)日本昆蟲學會會報11(10): 239-240。
13. 張家豪(2012)食茱萸抽出物應用於抗白蟻之評估。國立嘉義大學碩士論文。14. 陳江和(2001)安非他命及甲基安非他命光學異構物之氣相層析質譜鑑析。中央警察大學碩士論文。15. 陳怡如(2011)樹狀高分子分子量鑑定及分析研究 國立台北科技大學碩士論文。16. 陳柏光(2010)不同溫度採集竹/木醋液抑菌性及初步安全性之評估。國立嘉義大學碩士論文。
17. 曾文慧(2010)白蟻腸道共生體的纖維素代謝體系。環境昆蟲學報。32(3):392-398。
18. 賀孝雍(1989)有機化合物之光譜鑑定法。化學叢書之二。
19. 黃小暉(2009)白蟻腸道纖維素分解菌的篩選及產酶條件的研究。江西農業大學學報。31(6):1140-1145。
20. 楊紅、彭建新、劉凱于、洪華珠(2006)低等白蟻腸道共生微生物的多樣性及其功能。微生物學報。46(3):496-499。
21. 楊若苓(2011) 如何解決院區惱人的白蟻問題。故宮文物月刊341:122-127。22. 楊若苓、李後鋒(2012)台灣常見五種白蟻的分類與鑑定。台灣昆蟲32: 169-198
23. 劉貴生、李堅、路文達(1987)用紅外光譜法識別紅松、落葉松木材微細碎料初探。東北林業大學學報16(6):33-38。
24. 劉毓芬(2006)以燁興層析電噴灑游離離子阱質譜儀建立濫用藥物在尿液樣本之懭篩方法。慈技大學。pp10-42。
25. 蔡忠庭(2009)不同溫度採集孟宗竹竹醋液抗氧化與抗脂肪氧化能力之研究。國立嘉義大學碩士論文。26. 蔡易霖(2012)台灣南部大腸桿菌及環境分離細菌之特性分析。國立嘉義大學碩士論文。27. 鄧啟平(2008)FTIR法研究出土木材化學結構及化學成分的變化。西北林學院學報。23(2):149 - 153
28. 鞏迎春(2005)鞭毛蟲的掃描電鏡樣品製備。中國海洋大學學報。35(3):496-498。
29. 蕭文鳳(1998)白蟻入侵美國本土處理始末。農業世界雜誌182:100-101。30. 鍾燁毅(2011)巴豆乙醇萃取物抗酶及抑菌性之研究。國立嘉義大學碩士論文。31. Ahmad M.(1950)The phylogeny of termites genera based on imago-worker mandibles. AMNH 95: 43-85.
32. Ahmad M.(1965)Termites(Isoperta)of Thailand. Bulletin of the American Museum of Natural History 131: 1-113.
33. Arakawa G, Watanabe H, Yamasaki H, Maekawa H, Tokuda G. (2009)Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Biosci Biotechnol Biochem;73:710–8.
34. Bignell DE.,(1994)Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA, editors. Nourishment and Evolution in Insect Societies. Boulder, CO: Westview Press; pp. 131–58.
35. Breznak JA, Brune A,(1994 )Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39:453-487.
36. Brune A, (2006)Symbiotic associations between termites and prokaryotes, in prokaryotes. Springer New York. 439-474
37. Brune A.(1998)Termite guts:the world's smallest bioreactors. Tibtech January, 6, 16-21.
38. Burnum KE, Callister SJ, Nicora CD, Purvine SO, Hugenholtz P, Warnecke F,(2011)Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. International Society for Microbial Ecology J;5:161–4.
39. Chung, C.H., Chen C.S.(1994)A review of Taiwanese termites (Insecta, Isoptera)with keys to adults and soldiers. Yushania 11: 193-203.
40. Colom X., Carrillo F., Crystallinity changes inlyocell and viscose type fibres by caustic treatment. European Polymer. 38:2225-2223
41. Cook TJ., Gold RE, (2000) Effect of different cellulose sources on the sturture of the hindgut flagellate community in Reticlitermes virginicus bank. Sociobiology;36:119-130
42. Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preson CM,(2009)Plant traits and wood fates across the globe: rotted, burned, or consumed? Global Change Biol;15:2431–49.
43. Costa-Leonardo A. M., Laranjo L.T., Janei V., Haifig I.(2013)The fat body of termites:Functions and Stored materials. Journal of Inscet Physiology 59: 577-587.
44. Edwards R., Mill A.E.(1986)Termites in buildings. Rentokil limited, East grinstead. p. 261.
45. Eggleton P. (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites: A Modern Synthesis. Dordrecht: Springer;. pp. 1-26.
46. Fröhlich J., Koustiane C., Kämpfer P., Rosselló -Mora R., Valens M., Berchtold M., Kuhnigk T., Hertel H., Maheshwari DK., König H.(2007) Occurrence of rhizobia in the gut of the higher termite Nasutitermes nigriceps, Systematic and Applied Microbiology 30: 68–74.
47. Fujita A, Hojo M, Aoyagi T, Hayashi Y, Arakawa G, Tokuda G. (2010)Details of the digestive system in the midgut of Coptotermes formosanus Shiraki. Journal of Wood Science ;56:222–6.
48. Fujita A, Miura T, Matsumoto T. (2008) Differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol; 33:73–82.
49. Guedegbe J.H., Miambi E., Pando A., Roman J., Houngandan P., Rouland-Lefever C.(2009)Occurrence of fungi in combs of fungus-growing termites(Isoptera:Termitidae, Macrotermitinae). Mycological Research 113: 1039-1045.
50. H. König, A. Varma(Eds.)(2006)Intestinal Microorganisms of Termites and Other Invertebrates, Springer, Heidelberg.
51. Henrissat B, Bairoch A.(1993)New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J;293:781–8.
52. Higashi M., and Abe T.,(1996)Global diversification of termites driven by the evolution of symbiosis and sociality. In: Abe, T., Levin, S.A., Higashi, M.(Eds.), Biodiversity: An Ecological Perspective. Springer-Verlag, New York, pp. 83–112.
53. Hongjie L., Jianzhong S., Jianming Z., Tianfu D., Jirong L., Ying D., Wan D., Jianchu M.(2012)Physicochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus. Journal of Insect Physiology 58, pp. 1368-1375.
54. Hongoh Y. (2011)Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci;68:1311–25.
55. Hoorfar J., Cook N, Malorny B, de Medici D, Abdulmawjood A, Fach P.(2004)Diagnostic PCR: making internal amplification control mandatory. Journal of Applied Microbiology 96: 221–222.
56. Inoue T., Moriya S., Ohkuma M., Kudo T.(2005)Molecular cloning and chararcteriztion of a cellulose of a cellulase gene from a symbiotic protist of the lower termite, Coptoteres formosanus. Gene 349: 67-75.
57. Jinfeng N, Gaku T.(2013)Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances 31 pp. 838–850.
58. Jing K., Deepak S., Shulin C.(2011)Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). International Biodeterioration &; Biodegradation 65, pp. 744-756.
59. Juturu V., Wu JC.(2012)Microbial xylanases: engineering, production and industrial applications. Biotechnol Advances; 30:1219–27.
60. Ke J., Singh D., and Chan S.,(2011)Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). International Biodeterioration &; Biodegradation 65: 744-756.
61. Köhler T, Dietrich C, Scheffrahn RH, Brune A.(2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites(Nasutitermes spp.). Applied and Environmental Microbiology; 78: 4691–701.
62. Krishna K. (1961) A generic revision and phylogenetic study of the faimly Kalotermitidae (Isoptera). Bulletin of the American Museum of Natural History.122: 303-408.
63. Kuhnigk T., Branke J., Krkeler D., Cypionka H., König H., (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology, Vol.19, pp. 139-149.
64. Leonardo FC, da Cunha AF, da Silva MJ, Carazzolle MF, Costa-Leonardo AM, Costa FF.(2011)Analysis of the workers head transcriptome of the Asian subterranean termite, Coptotermes gestroi. Bull Entomol Res;101:383–91.
65. Lewis, VR.(1997)Alternative control strategies for termites. Journal of Agricultural Entomology 14: 291-307.
66. Liu N., Yan X., Zhang ML., Xie L.,Wang QA., Huang YP.(2011) Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes. Applied and Environmental Microbiology; 77: 48–56.
67. Lo N., Eggleton P.(2011)Termite phylogenetics and co-cladogensis with symbionts. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites: A Modern Synthesis. Dordrecht: Springer; pp. 51–67.
68. Lu JJ., Perng CL., Lee SY., Wan CC. (2000)Use of PCR with universal primers and restriction endonuclease digestion for detection and identification of common bacterial pathogens in cerebrospinal fluid. Journal of Clinical Microbiology, pp. 2076-2080.
69. M. Wenzel, I. Schönig, M. Berchtold, H. König,(2002)Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis, Journal of Applied Microbiology 92, pp. 32–40.
70. Matteotti C, Bauwens J, Brasseur C, Tarayre C, Thonart P, Destain J, (2012)Identification and characterization of a new xylanase from gram-positive bacteria isolated from termite gut(Reticulitermes santonensis). Protein Expression and Purification; 83: 117–27.
71. Matteotti C, Haubruge E, Thonart P, Francis F, De Pauw E, (2011) Portetelle D,Characterization of a new β-glucosidase/beta-xylosidase from the gut microbiota of the termite. FEMS Microbiol Lett; 314:147–57.
72. Matt'eotti C., Bauwens J., Brasseur C., Tarayre C., Thonart P., Destain J., Francis F., Haubruge E., Pauw E. D., Portetelle D., Vandenbol M. (2012)Identification and characterization of a new xylanase from gram-positive bacteria isolated from termite gut(Reticulitermes santonensis). Protein Expression and Purification 83 pp. 117-127.
73. Nakashima K., Watanabe H., Saitoh H., Tokuda G., Azuma J.-I. (2002)Dual cellulose-digesting system of the wood-feeding termite, Coptoterms formosanus Shiraki. Insect Biochemistry and Molecular Biology 32: 777-784.
74. O’Brien, R.W. and Slaytor, M.(1982)Role of microorganisms in the metabolism of termites. Australian Journal of Biological Sciences 35: 239–262.
75. Odelson DA, Brezank JA. (1985)Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoa from termites. Applied and Environmental Microbiology, 49:622-626
76. Ohkuma M., Kudo T.(1998)Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. Fems Microbiology Letter 164, pp. 389-395.
77. Paterson RRM.(2004)The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycological Research 108:1431–1437.
78. Paterson RRM.(2005)Fungus or bacterium and vice versa? Microbiology, 109:151:641.
79. Paterson RRM.(2005)The coronamycin producer: a case of mistaken identity? Mycol Res, pp. 109:850–1.
80. Russell R. and Paterson M.(2006)Identification and quantification of mycotoxigenic fungi by PCR. Process Biochemistry 41: 1467-1474.
81. Scharf ME, Karl ZJ, Sethi A, Boucias DG.(2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One; 6:p 21709.
82. Scharf ME, Tartar A.(2008)Termite digestomes as sources for novel lignocellulases. Biofuels, Bioproducts and Biorefining; 2:540–52.
83. Schultz, J.E. and Breznak, J.A.(1978)Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 35, pp. 930–936.
84. Shimada K, Maekawa K(2010) Changes in endogenous cellulase gene expression levels and reproductive characteristics of primary and secondary reproductives with colony development of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Journal of Insect Physiology; 56:1118–24.
85. Slaytor M.(2000)Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M, editors. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, The Netherlands: Kluwer Academic Publishers; pp. 307–32.
86. Smith JA, Scharf ME, Pereira RM, Koehler PG.(2009) Comparisons of gut carbohydrolase activity patterns in Reticulitermes flavipes and Coptotermes formosanus(Isoptera: Rhinotermitidae) workers and soldiers. Sociobiology; 53:113–24.
87. Sting U, Radek R, Yang H. (2005)"Endomicrobia":Cytoplasmic symbionts of termit gut protozoa form a separate phylum of prokaryotes. Applied and Environmental Microbiology, 71(3):1473-1479
88. Tartar A, WheelerMM, Zhou X, Coy MR, Boucias DG, ScharfME. (2009)Parallel metatranscriptome analyses of host and symbiotic gene expression in the gut of the termite Reticulitermes flavipes. Biotechnology for Biofuels; 2:25.
89. Tholen, A., Schmk, B. and Bnme, A.(1997)FEMS Microbiology Ecology 24, pp. 137-149
90. Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H. (2004)Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology; 13:3219–28.
91. Tokuda G, Lo N, Watanabe H.(2005)Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiological Entomology; 30: 372–80.
92. Tokuda G, Miyagi M, Makiya H, Watanabe H, Arakawa G.(2009) Digestive β-gluosidases from the wood-feeding higher termite, Nastitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression. Insect Biochemistry and Molecular Biology; 39:931–7.
93. Tokuda G, Saito H, Watanabe H.(2002)A digestive β-glucosidase from the salivary glands of the termite, Neotermes koshunensis(Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochemistry and Molecular Biology; 32:1681–9.
94. Tokuda G, Watanabe H, Lo N. (2007)Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Gene; 401:131–4.
95. Tomme P,Warren RAJ, Gilkes NR.(1995)Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology; 37:1-81.
96. Tsai C.C., Chen C.S.(2003)First record of Coptotermes gestroi (Isoptera, Rhinotermitidae)from Taiwan. Formosan Entomologist 23: 157-161.
97. Vera T., James ER., Perlman SJ. and Keeling PJ.,(2013) Single-Cell DNA Barcoding Using Sequences from the Small Subunit rRNA and Internal Transcribed Spacer Region Identifies New Species of Trichonympha and Trichomitopsis from the Hindgut of the Termite Zootermopsis angusticollis PLoS One 8(3): e58728.
98. Verma M. Sharma S., Prasad R.(2009)Biological alternatives for termite control:A review. International Biodeterioration &; Biodegradation 63, pp. 959-972.
99. Watanabe H, Takase A, Tokuda G, Yamada A, Lo N.(2006) Symbiotic “Archaezoa” of the primitive termite Mastotermes darwiniensis still play a role in cellulase production. Eukaryot Cell;5:1571–6.
100. Wheeler QD.(2004)Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond 359:571–83.
101. Xie L. Zhang L., Zhong Y., Liu N., Long Y., Wang S., Zhou X., Zhou Z., Huang Y., Wang Q.(2012)Profiling the metatranscriptome of the protistan community in Coptotermes formosanus with emphasis on the lignocellulolytic system. Genomics 99: 246-255.
102. Yoshimura T. (1995)Contribution of the protozoa fauna to nutritional physiology of the lower termite Coptotermes formosanus Shiraki (Isoptera:Rhinotermitidae).Wood research 82:68-129
103. Yuki M, Moriya S, Inoue T, Kudo T.(2008)Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zoological Science;25:401–6.
104. Zhang D, Lax AR, Henrissat B, Coutinho P, Katiya N, NiermanWC, (2012)Carbohydrate-active enzymes revealed in Coptotermes formosanus(Isoptera: Rhinotermitidae)transcriptome. Insect Molecular Biology; 21:235–45.
105. Zhang DH, Lax AR, Bland JM, Yu JJ, Fedorova N, Nierman WC. (2010)Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Science; 17:245–52.