(3.238.7.202) 您好!臺灣時間:2021/03/04 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃崇睿
論文名稱:台灣家白蟻腸道菌相調查及功能之探究
論文名稱(外文):The Microflora Investigation and Functional Evaluation from the Guts of Coptotermes formosanus
指導教授:夏滄琪夏滄琪引用關係朱紀實
指導教授(外文):Tsang-chyi ShiahChishih Chu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:木質材料與設計學系研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
畢業學年度:103
語文別:中文
中文關鍵詞:台灣家白蟻腸道鞭毛蟲腸道共生菌纖維素分解酵素
外文關鍵詞:Coptotermes formosanus ShirakeFlagellateGut microbiotaCellulase enzymes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探究台灣家白蟻(Coptotermes formosanus Shirake)腸道之內容物、微生物及功能,並對於木質纖維素之分解作用與效率進行評估。試驗選取野外誘引及餵食不同食材之人工養殖台灣家白蟻工蟻及兵蟻之腸道,採用DIC光學顯微鏡、影像分析儀(FS-180U)及掃描式電子顯微鏡(SEM)進行白蟻之腸道內容物觀察。另以傅立葉轉換紅外線光譜儀(FT-IR)及氣相層析質譜儀(GC-MS)分析白蟻腸道內容物之成分。本研究同時採用傳統生物及分子生物鑑定法鑑定台灣家白蟻腸道之微生物,並探討其對纖維素之分解能力。
藉由DIC光學顯微鏡觀察台灣家白蟻腸道發現,在工蟻的囊形胃內部存在著大量的共生原生動物,有Holomastigotoides sp., Pseudotrichonympha sp. 及Spirotrichonympha leidyi等3種鞭毛蟲且隨餵食材料不同,而腸道中之共生鞭毛蟲種類隨著改變。白蟻腸道SEM影像,以酒精醋酸異戊酯脫水處理者最佳,其次為冷凍乾燥處理,室內風乾處理者最差。SEM觀察結果兵蟻的囊形胃及各腸道中類似細菌的球狀顆粒略少於工蟻。推測可能因工蟻兼有餵食其他類型蟻種之任務,故其腸內需對所進食之物進行消化及代謝,因此工蟻腸道的內容物較為豐富。
藉由FT-IR分析台灣家白蟻腸道內容物成分,以代表癒瘡木基(1327 cm-1)及木質素芳香環(1510 cm-1)等吸收峰之比值相較,發現工蟻之腸道對於木質素中的癒瘡木基和紫丁香基等官能基具消化作用。進一步以GC-MS分析,台灣家白蟻工蟻之腸道內含有大量的烷類、環烷類及脂肪酸等化合物成分,隨餵食不同食材者之腸道內容物而成分各不相同,證實台灣家白蟻腸道可將木質纖維素食材分解成不同類型之化合物。
由白蟻腸道內微生物之培養,並透過傳統生物鑑定法-生化八管及分子生物鑑定法結果得知,台灣家白蟻工蟻及兵蟻腸道共同存在之菌株為:Citrobacter koseri, Enterobacter cloacae及Proteus mirabilis等革蘭氏陰性菌。由於工蟻在台灣家白蟻的生態中主要擔任攝食者的角色,故在腸道內發現之菌種較兵蟻者多。經與餵食相異食材之腸道菌相比對,發現野生白蟻腸內之優勢菌株會隨食材不同而有所變化。分析菌株纖維素分解能力之,發現野外收集或經人工養殖餵食不同食料後具纖維素分解能力之菌株台灣家白蟻工蟻腸道中皆多於兵蟻者,經以分析濾紙作為食材的台灣家白蟻工蟻腸道所分離出之菌株中,如:Vibro furnssii, Enterobacter asburiae及Escherichia hermannii,皆具纖維素分解之能力。
藉由本研究分析對於台灣家白蟻腸道之結構、蟻種間腸道存在菌株的差異及菌株在腸道的分佈,篩選出纖維素分解效率較高之優勢菌種,可應用於木質材料之生質能源的研發。
The aim of this study is to investigate the structure, microbial and functions of the guts from Formosan termite (Coptotermes formosanus Shirake) worker and soldier, we collected guts from the worker and soldier termites the wild-type and feeding with different food stuffs. The intestinal contents were observed by DIC microscope, image analyzer (FS-180U) and scanning electron microscope (SEM), then to analysis the components of termite gut contents with Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography Mass Spectrometry (GC-MS). The study also uses the traditional and molecular identification method to identify microorganism from the termite's guts, and to investigate its decompose ability of cellulose.
According to the DIC microscope observation, we found a large number of the symbiotic protozoa in the worker termite's paunch. The symbiotic gut flagellates showed considerable various with different feeding material. We observed three kinds of symbiotic gut flagellates: Holomastigotoides sp., Pseudotrichonympha sp. and Spirotrichonympha leidyi. The best images of SEM photographs of termite's guts were the isoamyl acetate alcohol dehydration treatment, followed by the freeze-drying treatment and the indoor air-dried treatment. By SEM observation, the spherical particles similar to bacteria from the soldier termite's paunch and various intestinals but somewhat less in worker. We estimate that the soldier termites ate food stuffs by worker digested. Therefore a variety of the intestinal contents of worker were richer than soldier's.
The termite's guts contents analyzed by FTIR, we compared the ratio of the absorption of representative guaiacuyl group (1327 cm-1) and lignin aromatic ring (1510 cm-1) to get the gut of worker termite can digest the functional groups of guaiacuyl and syringyl lignin. Further analyses by the results of GC-MS, the intestinal of worker termite contains a lot of alkanes, cyclic alkanes and fatty acids compounds. The composition of intestinal contents from feeding with different materials termites were various. Therefore we proved that the worker termite's gut could decompose lignocellulose into different types of compounds.
With the intestinal microbial cultures, by means of traditional and molecular identification method, three common bacterial species found both in guts of worker and soldier termites: Citrobacter koseri, Enterobacter cloacae and Proteus mirabilis. Because worker termites play the role of the main feeder in ecology, the amount of bacteria species from worker's guts were more than the soldier's. And then we compared the bacteria species of the intestinal from feeding different materials termites, results showed the advantages bacteria species from wild-type termite's intestines will vary with different ingredients. In cellulolytic test, whether the bacterial species of the guts from the wild-type or farmed different materials worker termite, the bacterial species with cellulose degradation ability are more than the soldier's. Vibro furnssii, Enterobacter asburiae and Escherichia hermannii were mainly species and formed the decomposition circle on carboxymethylcellulose medium (CMC) from the worker termite’s guts by feeding with filter paper.
In this study, we had well understood about the structure of the termite's guts, the differences and distribution of the bacterial species between the worker and soldier termite's guts. In the future, the research will help to isolate the high efficiency of the cellulolytic species that apply to the developing of biomass energy from wood materials.
目錄----------------------------------------------------------------------------------------------Ⅰ
表目錄----------------------------------------------------------------------------------------Ⅴ
圖目錄----------------------------------------------------------------------------------------- Ⅷ
中文摘要-------------------------------------------------------------------------------------- XII
Abstract------------------------------------------------------------------------------------- XIV

第一章 前言----------------------------------------------------------------------------------- 1
第二章 文獻回顧----------------------------------------------------------------------------- 4
第一節 白蟻分類及分布------------------------------------------------------------------ 4
2.1.1 全球白蟻的分類及分布--------------------------------------------------------- 4
2.1.2 台灣本土白蟻的分布------------------------------------------------------------ 6
第二節 白蟻生態及危害------------------------------------------------------------------ 8
2.2.1 白蟻生態--------------------------------------------------------------------------- 8
2.2.2白蟻之危害------------------------------------------------------------------------ 11
第三節 白蟻腸道及共生之微生物----------------------------------------------------- 12
第三章 白蟻腸道之顯微觀察------------------------------------------------------------ 14
第一節 前言------------------------------------------------------------------------------- 14
第二節 材料與方法---------------------------------------------------------------------- 17
3.2 試驗材料---------------------------------------------------------------------------- 17
3.2.1台灣家白蟻----------------------------------------------------------------------- 17
3.2.2 餵食試驗材料------------------------------------------------------------------- 17
3.2.3 試驗儀器------------------------------------------------------------------------- 17
第三節 試驗方法------------------------------------------------------------------------- 18
3.3.1 白蟻之餵食處理---------------------------------------------------------------- 18
3.3.2白蟻腸道外觀及內容物觀察-------------------------------------------------- 19
第四節 結果與討論---------------------------------------------------------------------- 20
第五節 結語------------------------------------------------------------------------------- 29
第四章 白蟻腸道共生之微生物---------------------------------------------------------- 32
第一節 前言------------------------------------------------------------------------------- 32
第二節 材料與方法---------------------------------------------------------------------- 33
4.2 試驗材料--------------------------------------------------------------------------- 33
4.2.1 試驗白蟻------------------------------------------------------------------------- 34
4.2.2 餵食試驗材料------------------------------------------------------------------- 34
4.2.3 試驗用培養基------------------------------------------------------------------- 34
4.2.4 試驗試劑及緩衝液------------------------------------------------------------- 35
第三節 試驗方法------------------------------------------------------------------------- 36
4.3.1 白蟻之餵食處理---------------------------------------------------------------- 36
4.3.2 白蟻腸道採集------------------------------------------------------------------- 36
4.3.3 白蟻腸道微生物之培養------------------------------------------------------- 37
4.3.4 培養微生物之生物鑑別------------------------------------------------------- 38
第四節 結果與討論---------------------------------------------------------------------- 41
第五節 結語------------------------------------------------------------------------------- 50
第五章 白蟻腸道內容物之成分分析----------------------------------------------------- 51
第一節 前言--------------------------------------------------------------------------------51
第二節 材料與方法----------------------------------------------------------------------- 54
5.2. 試驗材料--------------------------------------------------------------------------- 54
5.2.1 試驗白蟻-------------------------------------------------------------------------- 54
5.2.2 餵食試驗用之材料-------------------------------------------------------------- 54
5.2.3 試驗儀器-------------------------------------------------------------------------- 54
第三節 試驗方法-------------------------------------------------------------------------- 54
5.3.1 白蟻之餵食處理----------------------------------------------------------------- 54
5.3.2 白蟻腸道採集-------------------------------------------------------------------- 55
5.3.3 白蟻腸道之FTIR分析-------------------------------------------------------- 55
5.3.4 白蟻腸道之氣相層析質譜儀(GC/MS)分析---------------------------- 55
第四節 結果與討論---------------------------------------------------------------------- 55
第五節 結語------------------------------------------------------------------------------- 66
第六章 白蟻腸道之分解機制------------------------------------------------------------- 68
第一節 前言------------------------------------------------------------------------------- 68
6.1.1 纖維素之結構及其分解酶----------------------------------------------------- 68
6.1.2 半纖維素之結構及其分解酶-------------------------------------------------- 70
6.1.3木質素之結構及其分解酶------------------------------------------------------ 71
6.1.4 白蟻腸道之分解機制----------------------------------------------------------- 72
第二節 材料與方法----------------------------------------------------------------------- 80
6.2 試驗材料---------------------------------------------------------------------------- 80
6.2.1 試驗之菌株----------------------------------------------------------------------- 80
6.2.2 試驗用培養基-------------------------------------------------------------------- 81
第三節 試驗方法-------------------------------------------------------------------------- 82
6.3.1 菌株之纖維素分解能力測試-------------------------------------------------- 82
6.3.2 菌株內切型葡聚糖酶活性測試----------------------------------------------- 82
6.3.3 菌株外切型葡聚糖酶活性測試----------------------------------------------- 82
第四節 結果與討論----------------------------------------------------------------------- 83
第五節 結語-------------------------------------------------------------------------------- 87
第七章 結論----------------------------------------------------------------------------------- 89
第八章 參考文獻----------------------------------------------------------------------------- 93


表目錄
頁次
表1-1 白蟻的分類與分佈------------------------------------------------------------------ 5
Table 1-1 The classification and distribution of termites

表3-1 台灣家白蟻餵食不同材料 30天後之重量損失率--------------------------- 21
Table 3-1 The average weight loss rate of the feeding materials from
Coptotermes formosanus 30 day after feeding

表4-1 分子生物鑑定法採用之引子對---------------------------------------------------- 36
Table 4-1 The primers the molecular identification of microbial species

表4-2 台灣家白蟻工蟻及兵蟻腸道單一菌落之革蘭氏染色結果------------------ 43
Table 4-2 Gram staining of the bacteria from the guts of worker and soldier
termite’s

表4-3 無氧狀態培養1天及4天下分離出之台灣家白蟻工蟻及兵蟻腸道菌株--- 44
Table4-3 Bacterial species from the guts of Coptotermes formosanus worker and
soldier on LA medium in culturing for 1 and 4 days in aerobic and
anaerobic condition

表4-4 有氧狀態培養1 d及4 d下分離出之台灣家白蟻工蟻及兵蟻腸道菌株----- 45
Table 4-4 Bacterial species in the guts of worker and soldier of Coptotermes
formosanus in aerobic condition on LA medium for 1d and 4d

表4-5有氧狀態培養第4天台灣家白蟻工蟻及兵蟻腸道分離之菌株------------- 47
Table 4-5 Bacterial species in the guts of worker and soldier of Coptotermes
formosanus in aerobic condition on LA medium


表4-6 無氧狀態培養台灣家白蟻工蟻及兵蟻腸道分離之菌株--------------------- 48
Table 4-6 Bacterial species in the guts of worker and soldier of Coptotermes
formosanus in anaerobic condition on LA medium

表4-7 餵食不同食材之台灣家白蟻腸道菌相------------------------------------------ 49
Table 4-7 The intestinal flora from the gut of Coptotermes formosanus by
after feeding different materials

表5-1台灣家白蟻及餵食不同食料者腸道之FTIR吸收峰數值比---------------- 57
Table 5-1 The value ratio of FTIR absorption peak from of the Coptotermes
formosanus guts and feeding with different material

表-2野外台灣家白蟻工蟻腸道內容物之成分分析------------------------------------ 59
Table -2 The components of intestinal contents from the wild-type worker
termite's

表5-3分析濾紙之GC-MS成分分析---------------------------------------------------- 62
Table 5-3 The GC-MS analysis of the components of the filter paper

表5-4 餵食分析濾紙台灣家白蟻工蟻腸道內容物之GC-MS成分分析----------- 63
Table 5-4 The components of intestinal contents from worker termite's feeding
with filter paper

表5-5 台灣二葉松木片之GC-MS成分分析--------------------------------------------- 64
Table 5-5 The GC-MS analysis of the components of Pinus taiwanensis

表5-6 餵食台灣二葉松木片台灣家白蟻工蟻腸道內容物GC-MS成分分析----- 65
Table 5-6 The components of intestinal contents from worker termite's feeding
with Pinus taiwanensis
表6-1 純化自白蟻或共生系統的木聚醣------------------------------------------------ 77
Table 6-1 Xylanases purified or sequenced from termites or symbiotic
microorganisms

表6-2台灣家白蟻腸道菌株--------------------------------------------------------------- 81
Table 6-2 The intestinal flora from the gut of Coptotermes formosanus

表6-3 台灣家白蟻工蟻及兵蟻腸道菌株之纖維素分解測試------------------------ 84
Table 6-3 The cellulolytic capability of bacterial species from the guts of worker
and soldier Coptotermes formosanus

表6-4 台灣家白蟻工蟻腸道所分離出具纖維素分解能力之菌株----------------- 85
Table 6-4 The cellulolytic bacterial species with cellulase activity






















圖目錄
圖2-1 各種白蟻之外觀照片----------------------------------------------------------------- 6
Fig. 2-1 The photographs of the different family termites

圖2-2 試驗流程圖---------------------------------------------------------------------------- 13
Fig. 2-2 The flow chart of research

圖3-1白蟻之腸道示意圖-------------------------------------------------------------------- 14
Fig. 3-1 The schematic diagram of the termite's gut

圖3-2 高等白蟻與低等白蟻腸道結構---------------------------------------------------- 15
Fig. 3-2 The schematic diagram of the gut between lower termites and higher
termites
圖3-3 台灣家白蟻腸道內原生動物組成之百分比------------------------------------ 16
Fig.3-3 The percentage of the protozoa in the gut of Coptotermes formosanus

圖3-4 台灣家白蟻腸道收集示意圖------------------------------------------------------ 19
Fig. 3-4 The sampling process of guts from Coptotermes formosanus

圖3-5 以影像分析儀FS-180U觀察野外台灣家白蟻工蟻及兵蟻之腸道 --------- 22
Fig. 3-5 The observation of the guts of Coptotermes formosanus worker and
soldier by FS-180U

圖3-6 餵食不同食料之台灣家白蟻工蟻及兵蟻腸道外觀----------------------------23
Fig. 3-6 The appearance of the guts from workers and soldiers Coptotermes
formosanus after feeding different materials

圖3-7 以微分干涉差顯微鏡觀察野外台灣家白蟻工蟻腸道中鞭毛蟲之觀察--- 24
Fig. 3-7 The observation of the flagellates in the guts of wild-type worker
Coptotermes formosanus by DIC microscope

圖3-8 以微分干涉差顯微鏡觀察野外台灣家白蟻工蟻腸道中鞭毛蟲-------------25
Fig. 3-8 The observation of the flagellates in the guts wild-type soldier
Coptotermes formosanus by DIC microscope

圖3-9 以微分干涉差顯微鏡觀察餵食台灣二葉松之台灣家白蟻工蟻腸道中鞭毛
蟲之觀察------------------------------------------------------------------------------ 26
Fig. 3-9 The observation of the flagellates of guts from Pinus taiwanensis-feeding
worker Coptotermes formosanus by DIC microscope

圖3-10 以微分干涉差顯微鏡觀察餵食分析濾紙之台灣家白蟻工蟻腸道中鞭毛蟲
之觀察--------------------------------------------------------------------------------- 26
Fig. 3-10 The observation of the flagellates of guts from filter papaer-feeding
worker Coptotermes formosanus by DIC microscope

圖4-1 台灣家白蟻腸道微生物之multiplex PCR電泳圖-----------------------------42
Fig. 4-1 The electrophoresis of multiplex PCR products of miciobial amplified
from the gut of Coptotermes formosanus

圖5-2 野外台灣家白蟻工蟻及餵食不同食料者之FT-IR圖----------------------- 56
Fig. 5-2 The FTIR spectrum the wild-type and worker termite's guts after
feeding different material

圖5-3 野外台灣家白蟻兵蟻及餵食不同食料者之FTIR圖------------------------ 56
Fig. 5-2 The FTIR spectrum the wild-type and soldier termite's guts after
feeding different material

圖5-4 野外台灣家白蟻工蟻腸道之GC-MS光譜圖--------------------------------- 59
Fig. 5-4 The GC-MS spectrum the wild-type worker termite's guts

圖5-5 分析濾紙之GC-MS 光譜圖----------------------------------------------------- 61
Fig. 5-5 The GC-MS spectrum the filter paper

圖5-6餵食濾紙後台灣家白蟻工蟻腸道GC-MS光譜圖---------------------------- 62
Fig. 5-6 The GC-MS spectrum worker termite's guts after feeding with filter
paper
圖5-7台灣二葉松之GC-MS 光譜圖---------------------------------------------------- 63
Fig. 5-7 The GC-MS spectrum from the Pinus taiwanensis

圖5-8餵食台灣二葉松之台灣家白蟻工蟻腸道GC-MS光譜圖-------------------- 64
Fig. 5-8 The GC-MS spectrum after feeding with Pinus taiwanensis-feeding
worker termite's guts

圖5-9 野外台灣家白蟻與餵食不同食料者之GC-MS光譜圖---------------------- 66
Fig. 5-9 The GC-MS spectrum from wild-type and feeding different
materials worker termite's guts

圖6-1 內切型葡聚醣酶水解纖維素過程------------------------------------------------ 69
Fig. 6-1 The process of cellulose hydrolysis by endo-glucanase

圖6-2 β-葡萄糖苷酶水解纖維素過程---------------------------------------------------- 69
Fig. 6-2 The process of cellulose hydrolysis byβ- glucosidase

圖6-3外切型葡聚醣酶水解纖維素過程------------------------------------------------- 70
Fig. 6-3 The process of cellulose hydrolysis by exo-glucanase

圖6-4 半纖維素水解作用------------------------------------------------------------------ 71
Fig. 6-4 Hydrolysis of hemicellulose

圖6-5 雲杉木質素的完整結構模型------------------------------------------------------ 72
Fig. 6-5 The comprehensive structural model of spruce lignin

圖6-6 低等白蟻腸道纖維素分解系統示意圖------------------------------------------- 75
Fig. 6-6 The schematic diagram of the cellulolytic systems in lower termites

圖6-7低等白蟻的木質素降解系統------------------------------------------------------- 79
Fig. 6-7 The lignocellulose-degrading systems of lower termite

圖6-8 台灣家白蟻腸道菌株之內切型葡聚醣酶--------------------------------------- 86
Fig. 6-8 The endo-glucanase of bacterial species from Coptotermes formosanus
圖6-9 台灣家白蟻腸道菌株之外切型葡聚醣酶--------------------------------------- 89
Fig. 6-9 The exo-glucanase of bacterial species from Coptotermes formosanus

圖版目錄
圖版1 相異乾燥處理之台灣家白蟻工蟻腸道SEM照相---------------------------- 28
Plate 1 The photograph of SEM from the guts of Coptotermes formosanus by
three different drying methods

圖版2經酒精醋酸異戊酯脫水處理台灣家白蟻腸道之SEM照相----------------- 29
Plate 2 The photograph of SEM from the guts of Coptotermes formosanus by
alcohol-isoamyl acetate dehydration
1. 王正雄(1993)白蟻的社會階級。環境檢驗所研究報告季刊 2 (2)。pp.117-128。
2. 王守範(1976)白蟻及其防除方法。台灣林業試驗所。林業叢刊第8號。
3. 朱冠穎(2007)白蟻腸道細菌Clostridium xylanolyticum Ter3之分離及其糖化纖維素與產氫活性分析,國立中興大學碩士論文。
4. 吳孟玲(2011)木材腐朽菌PCR快速檢測技術建立。中華林學季刊。44(4):501-516。
5. 吳韋靜(2009)利用白蟻腸內共生菌Clostridium xylanolyticum分解木質纖維素,國立台灣大學碩士論文。
6. 李後峰(2010)家白蟻全球分佈與族群遺傳。台灣白蟻生物學及防治研討會暨研習會摘要集。p.18。
7. 林淑娟(2009)白蟻腸道細菌菌相分析與分解木質纖維素菌種之研究,國立中興大學碩士論文。
8. 林勝傑、謝瑞忠(2004)植物抽出成分之抗蟻性。林業研究專訊 11(6):27-29。
9. 胡愛華(2009)基於FTIR的針闊葉材木質素和纖維素特性。東北林業大學學報37(9):79-90。
10. 徐爾烈(2002)白蟻的生態及習性。古蹟暨木構造白蟻防治研討會論文集 pp.35-41。
11. 徐爾烈(2007)台灣的白蟻種類及危害 China Academic Journal Electronic Publishing House. pp.1~56。
12. 素木得一(1909)日本昆蟲學會會報11(10): 239-240。
13. 張家豪(2012)食茱萸抽出物應用於抗白蟻之評估。國立嘉義大學碩士論文。
14. 陳江和(2001)安非他命及甲基安非他命光學異構物之氣相層析質譜鑑析。中央警察大學碩士論文。
15. 陳怡如(2011)樹狀高分子分子量鑑定及分析研究 國立台北科技大學碩士論文。
16. 陳柏光(2010)不同溫度採集竹/木醋液抑菌性及初步安全性之評估。國立嘉義大學碩士論文。
17. 曾文慧(2010)白蟻腸道共生體的纖維素代謝體系。環境昆蟲學報。32(3):392-398。
18. 賀孝雍(1989)有機化合物之光譜鑑定法。化學叢書之二。
19. 黃小暉(2009)白蟻腸道纖維素分解菌的篩選及產酶條件的研究。江西農業大學學報。31(6):1140-1145。
20. 楊紅、彭建新、劉凱于、洪華珠(2006)低等白蟻腸道共生微生物的多樣性及其功能。微生物學報。46(3):496-499。
21. 楊若苓(2011) 如何解決院區惱人的白蟻問題。故宮文物月刊341:122-127。
22. 楊若苓、李後鋒(2012)台灣常見五種白蟻的分類與鑑定。台灣昆蟲32: 169-198
23. 劉貴生、李堅、路文達(1987)用紅外光譜法識別紅松、落葉松木材微細碎料初探。東北林業大學學報16(6):33-38。
24. 劉毓芬(2006)以燁興層析電噴灑游離離子阱質譜儀建立濫用藥物在尿液樣本之懭篩方法。慈技大學。pp10-42。
25. 蔡忠庭(2009)不同溫度採集孟宗竹竹醋液抗氧化與抗脂肪氧化能力之研究。國立嘉義大學碩士論文。
26. 蔡易霖(2012)台灣南部大腸桿菌及環境分離細菌之特性分析。國立嘉義大學碩士論文。
27. 鄧啟平(2008)FTIR法研究出土木材化學結構及化學成分的變化。西北林學院學報。23(2):149 - 153
28. 鞏迎春(2005)鞭毛蟲的掃描電鏡樣品製備。中國海洋大學學報。35(3):496-498。
29. 蕭文鳳(1998)白蟻入侵美國本土處理始末。農業世界雜誌182:100-101。
30. 鍾燁毅(2011)巴豆乙醇萃取物抗酶及抑菌性之研究。國立嘉義大學碩士論文。
31. Ahmad M.(1950)The phylogeny of termites genera based on imago-worker mandibles. AMNH 95: 43-85.
32. Ahmad M.(1965)Termites(Isoperta)of Thailand. Bulletin of the American Museum of Natural History 131: 1-113.
33. Arakawa G, Watanabe H, Yamasaki H, Maekawa H, Tokuda G. (2009)Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Biosci Biotechnol Biochem;73:710–8.
34. Bignell DE.,(1994)Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA, editors. Nourishment and Evolution in Insect Societies. Boulder, CO: Westview Press; pp. 131–58.
35. Breznak JA, Brune A,(1994 )Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39:453-487.
36. Brune A, (2006)Symbiotic associations between termites and prokaryotes, in prokaryotes. Springer New York. 439-474
37. Brune A.(1998)Termite guts:the world's smallest bioreactors. Tibtech January, 6, 16-21.
38. Burnum KE, Callister SJ, Nicora CD, Purvine SO, Hugenholtz P, Warnecke F,(2011)Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. International Society for Microbial Ecology J;5:161–4.
39. Chung, C.H., Chen C.S.(1994)A review of Taiwanese termites (Insecta, Isoptera)with keys to adults and soldiers. Yushania 11: 193-203.
40. Colom X., Carrillo F., Crystallinity changes inlyocell and viscose type fibres by caustic treatment. European Polymer. 38:2225-2223
41. Cook TJ., Gold RE, (2000) Effect of different cellulose sources on the sturture of the hindgut flagellate community in Reticlitermes virginicus bank. Sociobiology;36:119-130
42. Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preson CM,(2009)Plant traits and wood fates across the globe: rotted, burned, or consumed? Global Change Biol;15:2431–49.
43. Costa-Leonardo A. M., Laranjo L.T., Janei V., Haifig I.(2013)The fat body of termites:Functions and Stored materials. Journal of Inscet Physiology 59: 577-587.
44. Edwards R., Mill A.E.(1986)Termites in buildings. Rentokil limited, East grinstead. p. 261.
45. Eggleton P. (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites: A Modern Synthesis. Dordrecht: Springer;. pp. 1-26.
46. Fröhlich J., Koustiane C., Kämpfer P., Rosselló -Mora R., Valens M., Berchtold M., Kuhnigk T., Hertel H., Maheshwari DK., König H.(2007) Occurrence of rhizobia in the gut of the higher termite Nasutitermes nigriceps, Systematic and Applied Microbiology 30: 68–74.
47. Fujita A, Hojo M, Aoyagi T, Hayashi Y, Arakawa G, Tokuda G. (2010)Details of the digestive system in the midgut of Coptotermes formosanus Shiraki. Journal of Wood Science ;56:222–6.
48. Fujita A, Miura T, Matsumoto T. (2008) Differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol; 33:73–82.
49. Guedegbe J.H., Miambi E., Pando A., Roman J., Houngandan P., Rouland-Lefever C.(2009)Occurrence of fungi in combs of fungus-growing termites(Isoptera:Termitidae, Macrotermitinae). Mycological Research 113: 1039-1045.
50. H. König, A. Varma(Eds.)(2006)Intestinal Microorganisms of Termites and Other Invertebrates, Springer, Heidelberg.
51. Henrissat B, Bairoch A.(1993)New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J;293:781–8.
52. Higashi M., and Abe T.,(1996)Global diversification of termites driven by the evolution of symbiosis and sociality. In: Abe, T., Levin, S.A., Higashi, M.(Eds.), Biodiversity: An Ecological Perspective. Springer-Verlag, New York, pp. 83–112.
53. Hongjie L., Jianzhong S., Jianming Z., Tianfu D., Jirong L., Ying D., Wan D., Jianchu M.(2012)Physicochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus. Journal of Insect Physiology 58, pp. 1368-1375.
54. Hongoh Y. (2011)Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci;68:1311–25.
55. Hoorfar J., Cook N, Malorny B, de Medici D, Abdulmawjood A, Fach P.(2004)Diagnostic PCR: making internal amplification control mandatory. Journal of Applied Microbiology 96: 221–222.
56. Inoue T., Moriya S., Ohkuma M., Kudo T.(2005)Molecular cloning and chararcteriztion of a cellulose of a cellulase gene from a symbiotic protist of the lower termite, Coptoteres formosanus. Gene 349: 67-75.
57. Jinfeng N, Gaku T.(2013)Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances 31 pp. 838–850.
58. Jing K., Deepak S., Shulin C.(2011)Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). International Biodeterioration &; Biodegradation 65, pp. 744-756.
59. Juturu V., Wu JC.(2012)Microbial xylanases: engineering, production and industrial applications. Biotechnol Advances; 30:1219–27.
60. Ke J., Singh D., and Chan S.,(2011)Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). International Biodeterioration &; Biodegradation 65: 744-756.
61. Köhler T, Dietrich C, Scheffrahn RH, Brune A.(2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites(Nasutitermes spp.). Applied and Environmental Microbiology; 78: 4691–701.
62. Krishna K. (1961) A generic revision and phylogenetic study of the faimly Kalotermitidae (Isoptera). Bulletin of the American Museum of Natural History.122: 303-408.
63. Kuhnigk T., Branke J., Krkeler D., Cypionka H., König H., (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology, Vol.19, pp. 139-149.
64. Leonardo FC, da Cunha AF, da Silva MJ, Carazzolle MF, Costa-Leonardo AM, Costa FF.(2011)Analysis of the workers head transcriptome of the Asian subterranean termite, Coptotermes gestroi. Bull Entomol Res;101:383–91.
65. Lewis, VR.(1997)Alternative control strategies for termites. Journal of Agricultural Entomology 14: 291-307.
66. Liu N., Yan X., Zhang ML., Xie L.,Wang QA., Huang YP.(2011) Microbiome of fungus-growing termites: a new reservoir for lignocellulase genes. Applied and Environmental Microbiology; 77: 48–56.
67. Lo N., Eggleton P.(2011)Termite phylogenetics and co-cladogensis with symbionts. In: Bignell DE, Roisin Y, Lo N, editors. Biology of Termites: A Modern Synthesis. Dordrecht: Springer; pp. 51–67.
68. Lu JJ., Perng CL., Lee SY., Wan CC. (2000)Use of PCR with universal primers and restriction endonuclease digestion for detection and identification of common bacterial pathogens in cerebrospinal fluid. Journal of Clinical Microbiology, pp. 2076-2080.
69. M. Wenzel, I. Schönig, M. Berchtold, H. König,(2002)Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis, Journal of Applied Microbiology 92, pp. 32–40.
70. Matteotti C, Bauwens J, Brasseur C, Tarayre C, Thonart P, Destain J, (2012)Identification and characterization of a new xylanase from gram-positive bacteria isolated from termite gut(Reticulitermes santonensis). Protein Expression and Purification; 83: 117–27.
71. Matteotti C, Haubruge E, Thonart P, Francis F, De Pauw E, (2011) Portetelle D,Characterization of a new β-glucosidase/beta-xylosidase from the gut microbiota of the termite. FEMS Microbiol Lett; 314:147–57.
72. Matt'eotti C., Bauwens J., Brasseur C., Tarayre C., Thonart P., Destain J., Francis F., Haubruge E., Pauw E. D., Portetelle D., Vandenbol M. (2012)Identification and characterization of a new xylanase from gram-positive bacteria isolated from termite gut(Reticulitermes santonensis). Protein Expression and Purification 83 pp. 117-127.
73. Nakashima K., Watanabe H., Saitoh H., Tokuda G., Azuma J.-I. (2002)Dual cellulose-digesting system of the wood-feeding termite, Coptoterms formosanus Shiraki. Insect Biochemistry and Molecular Biology 32: 777-784.
74. O’Brien, R.W. and Slaytor, M.(1982)Role of microorganisms in the metabolism of termites. Australian Journal of Biological Sciences 35: 239–262.
75. Odelson DA, Brezank JA. (1985)Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoa from termites. Applied and Environmental Microbiology, 49:622-626
76. Ohkuma M., Kudo T.(1998)Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. Fems Microbiology Letter 164, pp. 389-395.
77. Paterson RRM.(2004)The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycological Research 108:1431–1437.
78. Paterson RRM.(2005)Fungus or bacterium and vice versa? Microbiology, 109:151:641.
79. Paterson RRM.(2005)The coronamycin producer: a case of mistaken identity? Mycol Res, pp. 109:850–1.
80. Russell R. and Paterson M.(2006)Identification and quantification of mycotoxigenic fungi by PCR. Process Biochemistry 41: 1467-1474.
81. Scharf ME, Karl ZJ, Sethi A, Boucias DG.(2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One; 6:p 21709.
82. Scharf ME, Tartar A.(2008)Termite digestomes as sources for novel lignocellulases. Biofuels, Bioproducts and Biorefining; 2:540–52.
83. Schultz, J.E. and Breznak, J.A.(1978)Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 35, pp. 930–936.
84. Shimada K, Maekawa K(2010) Changes in endogenous cellulase gene expression levels and reproductive characteristics of primary and secondary reproductives with colony development of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Journal of Insect Physiology; 56:1118–24.
85. Slaytor M.(2000)Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M, editors. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, The Netherlands: Kluwer Academic Publishers; pp. 307–32.
86. Smith JA, Scharf ME, Pereira RM, Koehler PG.(2009) Comparisons of gut carbohydrolase activity patterns in Reticulitermes flavipes and Coptotermes formosanus(Isoptera: Rhinotermitidae) workers and soldiers. Sociobiology; 53:113–24.
87. Sting U, Radek R, Yang H. (2005)"Endomicrobia":Cytoplasmic symbionts of termit gut protozoa form a separate phylum of prokaryotes. Applied and Environmental Microbiology, 71(3):1473-1479
88. Tartar A, WheelerMM, Zhou X, Coy MR, Boucias DG, ScharfME. (2009)Parallel metatranscriptome analyses of host and symbiotic gene expression in the gut of the termite Reticulitermes flavipes. Biotechnology for Biofuels; 2:25.
89. Tholen, A., Schmk, B. and Bnme, A.(1997)FEMS Microbiology Ecology 24, pp. 137-149
90. Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H. (2004)Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology; 13:3219–28.
91. Tokuda G, Lo N, Watanabe H.(2005)Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiological Entomology; 30: 372–80.
92. Tokuda G, Miyagi M, Makiya H, Watanabe H, Arakawa G.(2009) Digestive β-gluosidases from the wood-feeding higher termite, Nastitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression. Insect Biochemistry and Molecular Biology; 39:931–7.
93. Tokuda G, Saito H, Watanabe H.(2002)A digestive β-glucosidase from the salivary glands of the termite, Neotermes koshunensis(Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochemistry and Molecular Biology; 32:1681–9.
94. Tokuda G, Watanabe H, Lo N. (2007)Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Gene; 401:131–4.
95. Tomme P,Warren RAJ, Gilkes NR.(1995)Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology; 37:1-81.
96. Tsai C.C., Chen C.S.(2003)First record of Coptotermes gestroi (Isoptera, Rhinotermitidae)from Taiwan. Formosan Entomologist 23: 157-161.
97. Vera T., James ER., Perlman SJ. and Keeling PJ.,(2013) Single-Cell DNA Barcoding Using Sequences from the Small Subunit rRNA and Internal Transcribed Spacer Region Identifies New Species of Trichonympha and Trichomitopsis from the Hindgut of the Termite Zootermopsis angusticollis PLoS One 8(3): e58728.
98. Verma M. Sharma S., Prasad R.(2009)Biological alternatives for termite control:A review. International Biodeterioration &; Biodegradation 63, pp. 959-972.
99. Watanabe H, Takase A, Tokuda G, Yamada A, Lo N.(2006) Symbiotic “Archaezoa” of the primitive termite Mastotermes darwiniensis still play a role in cellulase production. Eukaryot Cell;5:1571–6.
100. Wheeler QD.(2004)Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond 359:571–83.
101. Xie L. Zhang L., Zhong Y., Liu N., Long Y., Wang S., Zhou X., Zhou Z., Huang Y., Wang Q.(2012)Profiling the metatranscriptome of the protistan community in Coptotermes formosanus with emphasis on the lignocellulolytic system. Genomics 99: 246-255.
102. Yoshimura T. (1995)Contribution of the protozoa fauna to nutritional physiology of the lower termite Coptotermes formosanus Shiraki (Isoptera:Rhinotermitidae).Wood research 82:68-129
103. Yuki M, Moriya S, Inoue T, Kudo T.(2008)Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zoological Science;25:401–6.
104. Zhang D, Lax AR, Henrissat B, Coutinho P, Katiya N, NiermanWC, (2012)Carbohydrate-active enzymes revealed in Coptotermes formosanus(Isoptera: Rhinotermitidae)transcriptome. Insect Molecular Biology; 21:235–45.
105. Zhang DH, Lax AR, Bland JM, Yu JJ, Fedorova N, Nierman WC. (2010)Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Science; 17:245–52.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔