[1] A. Gore, "An Inconvenient Truth," 2006.
[2] Wiki, "http://zh.wikipedia.org/wiki/%E7%87%83%E6%96%99%E7%94%B5%E6%B1%A0."
[3] 李培彰, "The effect on the microstructure and electrical conductivity of aliovalent cations(Gd3+,Mg2+,Sr2+) doped ceria," 國立台北科技大學 材料科學與工程研究所, 2009.
[4] 衣寶廉, 燃料電池-原理與應用: 五南圖書出版股份有限公司, 2005.
[5] W. R. Grove, "On Voltavic Series and the Combination of Gases by Platium," Philosophical Magazine and Journal of Science, vol. 14, pp. 127-130, 1839.
[6] V. M. Vishnyakov, "Proton exchange membrane fuel cells," Vacuum, vol. 80, pp. 1053-1065, 2006.
[7] R. Parsons, VanderNoot,T., "The oxidation of small organic molecules:A survey of recent fuel cell related research," Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 257, pp. 9-45, 1988.
[8] A. Arsalis, "Thermoeconomic modeling and parametric study of hybrid SOFC–gas turbine–steam turbine power plants ranging from 1.5 to 10MWe," Journal of Power Sources, vol. 181, pp. 313-326, 2008.
[9] B. Lin, J. Chen, Y. Ling, X. Zhang, Y. Jiang, L. Zhao, et al., "Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3−δ perovskite cathode and functional graded anode," Journal of Power Sources, vol. 195, pp. 1624-1629, 2010.
[10] Y. Yin, W. Zhu, C. Xia, and G. Meng, "Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells," Journal of Power Sources, vol. 132, pp. 36-41, 2004.
[11] Q. Liu, X. Dong, C. Yang, S. Ma, and F. Chen, "Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells," Journal of Power Sources, vol. 195, pp. 1543-1550, 2010.
[12] Wiki, "http://zh.wikipedia.org/wiki/%E6%B0%A2."
[13] J.-P. Z. San-Ping Jiang, Liliana Apateanu, Karl Foger, "Deposition of chromium species on Sr-doped LaMnO3 cathodes in solid oxide fuel cells," Electrochemistry Communications vol. 1, pp. 394-397, 1999.
[14] V. Thangadurai and P. Kopp, "Chemical synthesis of Ca-doped CeO2—Intermediate temperature oxide ion electrolytes," Journal of Power Sources, vol. 168, pp. 178-183, 2007.
[15] H. T. Hideaki Inaba, "Ceria-based solid electrolytes " Solid State Ionics vol. 83, pp. 1-16, 1996.
[16] S. Yin, M. Li, Y. Zeng, C. Li, X. Chen, and Z. Ye, "Study of Sm0.2Ce0.8O1.9 (SDC) electrolyte prepared by a simple modified solid-state method," Journal of Rare Earths, vol. 32, pp. 767-771, 2014.
[17] M. L. Changrong Xia, "Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs," Solid State Ionics, vol. 152-153, pp. 423-430, 2002.
[18] M. Thompson, "Synthesis and characterisation of δ-Bi2O3 related materials stabilised by substitutions of Ca, Ga, Nb and Re," The College of Engineering and Physical Sciences of the University of Birmingham, 2010.
[19] P. Shuk, Wiemhofer, H.D., Guth, U., Gopel, W. & Greenblatt, M., "Oxide ion conducting solid electrolytes based on Bi2O3," Solid State Ionics, vol. 89, pp. 179-196, 1996.
[20] G. A. T. N.M. Sammes, H. Nafe and F. Aldinger,, "Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity," Europan Ceramic Society, vol. 19, pp. 1801-1826, 1999.
[21] Y. M. Guangshe Li, Liping Li, Shouhua Feng, Minqiang and a. X. Y. Wang, "Solid solubility and transport properties of nanocrystalline(CeO2)(1-x)(BiO1.5)(x) by hydrothermal conditions," Chemistry of Materials, vol. 11, pp. 1259-1266, 1999.
[22] L. L. S. F. M. W. L. Guangshe Li and Z. X. Yaol., "An effective synthetic route for a novel electrolyte:Nanocrystalline solid solutions of (CeO2)(1-x)(BiO1.5)(x)." Advanced Materials, vol. 11, pp. 146-149, 1999.
[23] S. F. Hui Zhao, "Hydrothermal Synthesis and Oxygen Ionic Conductivity of Codoped Nanocrystalline Ce1-xMxBi0.4O2.6-x, M ) Ca,Sr, and Ba," Chem. Mater., vol. 11, pp. 958-964, 1999.
[24] M.-Y. Cheng, D.-H. Hwang, H.-S. Sheu, and B.-J. Hwang, "Formation of Ce0.8Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process," Journal of Power Sources, vol. 175, pp. 137-144, 2008.
[25] 黃國志, "以低溫水熱法合成Ce0.8Bi0.2-xMxO1.9(M=Sm、Er、Dy)固態氧化物燃料電池電解質與其電化學性質之研究," 國立台灣科技大學化學工程系, 2008.
[26] L. Bourja, B. Bakiz, A. Benlhachemi, M. Ezahri, J. C. Valmalette, S. Villain, et al., "Structural and Raman Vibrational Studies ofCeO2-Bi2O3 Oxide System," Advances in Materials Science and Engineering, vol. 2009, pp. 1-4, 2009.
[27] 肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
[28] 曲遠方, 功能陶瓷材料: 曉園出版社有限公司, 2006.
[29] 賴耿陽, 陶瓷材料覆膜技術: 復漢出版社有限公司, 2001.
[30] A. Aravind, M. K. Jayaraj, M. Kumar, and R. Chandra, "The dependence of structural and optical properties of PLD grown ZnO films on ablation parameters," Applied Surface Science, vol. 286, pp. 54-60, 2013.
[31] M. L. M. A. M. DeSantolo, S. Sunshine, B. A. Davidson, R. M. Fleming, P. Marsh and T. Y. Kometani, " Preparation of high Tc and Jc films of Ba2YCu3O7 using laser evaporation of a composite target containing BaF2," Appl. Phys. Lett., vol. 52, p. 1995, 1988.
[32] R. A. R. C. Richard Guarnieri, K. L. Saenger, S. A. Shivashankar, D. S. Yee and J. J. Cuomo, "Thin‐film Bi‐Sr‐Ca‐Cu‐O high‐temperature superconductors using pulsed laser evaporation from sintered disks," Appl. Phys. Lett., vol. 53, p. 532, 1988.
[33] T. V. D. Dijkkamp, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min‐Lee, W. L. McLean and M. Croft, "Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material," Appl. Phys. Lett., vol. 51, p. 619, 1987.
[34] J. B. B. D. K. Fork, F. A. Ponce, R. I. Johnson, G. B. Anderson, G. A. N. Connell, C. B. Eom and T. H. Geballe, "Preparation of oriented Bi‐Ca‐Sr‐Cu‐O thin films using pulsed laser deposition," Appl. Phys. Lett., vol. 53, p. 337, 1988.
[35] J. P. Z. H. S. Kwok, S. Witanachchi, P. Mattocks, L. Shi, Q. Y. Ying, X. W. Wang and D. T. Shaw, "Growth of highly oriented CdS thin films by laser‐evaporation deposition," Appl. Phys. Lett., vol. 52, p. 1095, 1988.
[36] N. B. J. Narayan, R. Singh, O. W. Holland and O. Auciello, "Formation of thin superconducting films by the laser processing method," Appl. Phys. Lett., vol. 51, p. 1845, 1987.
[37] J. N. N. Biunno, S. K. Hofmeister, A. R. Srivatsa and R. K. Singh, "Low‐temperature processing of titanium nitride films by laser physical vapor deposition," Appl. Phys. Lett. , vol. 54, p. 1519, 1989.
[38] J. B. K. Moorjani, F. J. Adrian, B. F. Kim, R. D. Shull, C. K. Chiang, L. J. Swartzendruber, and L. H. Bennett, "Superconductivity in bulk and thin films of La1.85Sr0.15CuO4-δand Ba2YCu3O7-δ," Phys. Rev. B, vol. 36, p. 4036, 1987.
[39] H. Kai, M. Mukaida, S. Horii, A. Ichinose, R. Kita, S. Kato, et al., "Superconducting properties and microstructure of PLD-ErBa2Cu3O7−δ film with BaNb2O6," Physica C: Superconductivity, vol. 463-465, pp. 895-899, 2007.
[40] H. Kai, M. Mukaida, R. Teranishi, N. Mori, K. Yamada, S. Horii, et al., "Effects of growth temperature for superconducting properties and microstructures of PLD-ErBa2Cu3O7−δ film with BaNb2O6," Physica C: Superconductivity, vol. 468, pp. 1854-1857, 2008.
[41] 陳銘堯, "簡介脈衝雷射蒸鍍法," 物理雙月刊, vol. 15, pp. 669-673, 1993.[42] J.-H. S. K.-K. Kim, H.-J. Jung, W.-K. Choi, S.-J. Park, and J.-H. Song, "The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering," Applied Physic, vol. 87, p. 3573, 2000.
[43] L. Bourja, B. Bakiz, A. Benlhachemi, M. Ezahri, S. Villain, and J. R. Gavarri, "Synthesis and characterization of nanosized Ce1−xBixO2−δ solid solutions for catalytic applications," Journal of Taibah University for Science, vol. 4, pp. 1-8, 2010.
[44] 楊盛發, "以脈衝雷射沉積法製備SDC固態電解質薄膜之電池效能影響研究," 國立東華大學 材料科學與工程研究所, 2015.
[45] 張建涵, "以脈衝雷射沉積法製備鋁摻雜的氧化鋅薄膜與其結構、光學及電學性質之探討," 國立東華大學 材料科學與工程研究所, 2012.
[46] 汪建民, 材料分析: 中國材料科學學會, 1998.
[47] 史美倫, 交流阻抗譜原理及應用: 北京:國防工業出版社, 2001.
[48] 邱. 姚潔宜, 簡仁德, "微結構對於YSZ材料導電特性之影響," 中華民國陶業研究學會, 2007.
[49] Z. Khakpour, A. Yuzbashi, A. Maghsodipour, and K. Ahmadi, "Electrical conductivity of Sm-doped CeO2 electrolyte produced by two-step sintering," Solid State Ionics, vol. 227, pp. 80-85, 2012.
[50] J.-G. Li, T. Ikegami, and T. Mori, "Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors," Acta Materialia, vol. 52, pp. 2221-2228, 2004.
[51] Y. Dong, D. Li, X. Feng, X. Dong, and S. Hampshire, "A high-strength Sm-doped CeO2 oxide-ion conducting electrolyte membrane for solid oxide fuel cell application," RSC Advances, vol. 3, p. 17395, 2013.
[52] D. B. I. Yet-Ming Chiang, W. David Kingery, Physical ceramics: John Wiley & Sons,Inc, 1997.