(3.237.97.64) 您好!臺灣時間:2021/03/05 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李明憲
研究生(外文):Ming-Hsien Li
論文名稱:以脈衝雷射沉積法製備 Ce1-xBixO2-y固態電解質之效能影響研究
論文名稱(外文):Study of performance of Ce1-xBixO2-y solid electrolyte by pulsed laser deposition
指導教授:張文固
指導教授(外文):Wen-Ku Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:103
中文關鍵詞:鉍摻雜氧化鈰脈衝雷射沉積固態氧化物電解質
外文關鍵詞:Bi-doped CeO2Pulsed Laser Deposition(PLD)SOFC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨以脈衝雷射沉積法(Pulsed Laser Deposition,PLD)製備中低溫(500℃~700℃)Ce1-xBixO2-y(x=0.05~0.2)SOFC電解質,以此取代傳統YSZ(ytria stabled zirconia)電解質材料。鉍摻雜氧化鈰電解質層製備是藉由CeO2與Bi2O3兩相混合的陶瓷靶材,經波長355nm,脈衝能量70mJ/pulse的Nd:YAG高能量脈衝雷射束轟擊,形成羽毛狀電漿態重新排列沉積於Si/Ti/Pt基板,透過改變基板溫度、鍍膜時間、摻雜濃度控制其成長變因,期望得到高離子導電率之薄膜。
所製備之薄膜,優選方向皆為(111),藉由XRD測量結果證明(111)峰值往低角度偏移,顯示CeO2晶格有擴張現象,Ce4+有被離子半徑大的Bi3+取代置換。將所有摻雜組成晶交流阻抗分析結果計算導電率,以Ce0.95Bi0.05O1.975 (B5DC)鍍膜10小時(膜厚1490nm),工作溫度700℃的離子導電率最高,約為4.13×〖10〗^(-8) S/cm,活化能為0.6041eV。在同濃度不同鍍膜時間條件下,皆以本實驗鍍膜最長參數10小時有最高的導電率,B20DC(1303nm)、B15DC(1165nm)、B10DC(1624nm),分別為9.27×10^(-9) S/cm、9.95×10^(-9) S/cm、6.18×10^(-9) S/cm。

This aim of this study is to prepare Ce1-xBixO2-y(x=0.05~0.2) solid electrolytes by pulsed laser deposition (PLD),which is operating at intermediate temperature (500℃~700℃) for solid oxide cells (SOFC).This study hope to develop BDC and expect to replace the traditional YSZ. Bi-doped CeO2 was prepared by the ceramic target, which contain the CeO2 and Bi2O3.The pulse laser source wavelength of 355nm Nd:YAG laser. The high energy laser interact on target surface and become ionzed gas, the CeO2 and Bi2O3 will form a solid solution and deposit on Si/Ti/Pt substrates. Bi-doped CeO2 thin film growth is controlled by changing the substrate temperature, deposition time and doping concentration.
The results showed all BDC thin film with (111) preferred orientation at pulse energy 70mJ/pulse. The XRD (111) peak shift to low angle, it means the lattice of CeO2 expand, the Ce4+ is replaced by Bi3+(Ionic radius:Bi3+ > Ce4+).Among the doping concentration, the Ce0.95Bi0.05O1.975 (B5DC) thin film which deposit 10 hours(1490nm) exhibited the highest conductivity about 4.13×〖10〗^(-8) S/cm at 700℃ and the activation energy is found to be 0.6041eV. At the same doping concentration, the thin film which deposit 10 hours exhibited highest conductivity, B20DC(1303nm)、B15DC(1165nm)、B10DC(1624nm), 9.27×10^(-9) S/cm、9.95×10^(-9) S/cm、6.18×10^(-9) S/cm.

目錄
致謝 I
摘要 II
Abstract III
目錄 i
圖目錄 vi
表目錄 x
第一章、 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
第二章、 理論基礎與文獻回顧 5
2-1 燃料電池概述 5
2-1-1 熔融碳酸鹽燃料電池(MCFC) 7
2-1-2 鹼性燃料電池(AFC) 8
2-1-3 磷酸型燃料電池(PAFC) 9
2-1-4 質子交換型燃料電池(PEMFC) 10
2-1-5 直接甲醇燃料電池(DMFC) 12
2-1-6 固態氧化物燃料電池(SOFC) 13
2-2 固態氧化物燃料電池各部分材料介紹 15
2-2-1 陽極功能與特性 15
2-2-2 電解質功能與特性 17
2-2-3 陰極功能與特性 20
2-3 CeO2基固體氧化物系統 21
2-3-1 CeO2摻雜氧化物 22
2-4 選擇摻雜化合物 23
2-4-1 Bi2O3相 23
2-4-2 Bi2O3系統 24
2-6 陶瓷靶材製備工藝 27
2-6-1 球磨原理 27
2-6-2 煅燒原理 28
2-6-3 造粒原理 28
2-6-4 乾壓成型 28
2-6-5 燒結原理 29
2-6-6 燒結各階段 30
2-6-7 燒結方法 31
2-7 脈衝雷射沉積原理 31
2-8 薄膜成長理論 33
第三章、 實驗藥品、方法與設備 35
3-1 符號說明 35
3-1-1 B20DC_C800_S900 35
3-2 實驗藥品 35
3-2-1 陶瓷粉體/高分子黏著劑 35
3-2-2 基板 35
3-2-3 溶劑 36
3-3 靶材製備 36
3-3-1 粉末製備 36
3-3-2 靶材製備 39
3-4 鍍電解質薄膜 39
3-5 製程設備 40
3-5-1 脈衝雷射沉積系統 40
3-6 分析儀器 42
3-6-1 X光繞射儀(X-ray Diffraction,XRD) 42
3-6-2 場發射型掃描式電子顯微鏡(Field Emission of Scanning Electron Microscope, FE-SEM) 43
3-6-3 3D表面輪廓儀 44
3-6-4 交流阻抗 45
第四章、 結果與討論 49
4-1 Bi2O3-CeO2靶材製備 49
4-1-1 球磨對混合粉末之影響 49
4-1-2 煅燒溫度對粉體之影響 50
4-1-3 煅燒時間對粉體之影響 51
4-1-4 燒結溫度對粉體之影響 53
4-1-5 燒結時間對靶材之影響 54
4-1-6 添加黏著劑對圓錠相對密度之影響 57
4-1-7 鍍膜靶材之製備 60
4-2 電解質薄膜分析 62
4-2-1 以玻璃基板製備BDC電解質薄膜 62
4-2-2 Si/Ti/Pt導電基板薄膜性質探討 68
第五章、 結論 95
第六章、 參考文獻 97

[1] A. Gore, "An Inconvenient Truth," 2006.
[2] Wiki, "http://zh.wikipedia.org/wiki/%E7%87%83%E6%96%99%E7%94%B5%E6%B1%A0."
[3] 李培彰, "The effect on the microstructure and electrical conductivity of aliovalent cations(Gd3+,Mg2+,Sr2+) doped ceria," 國立台北科技大學 材料科學與工程研究所, 2009.
[4] 衣寶廉, 燃料電池-原理與應用: 五南圖書出版股份有限公司, 2005.
[5] W. R. Grove, "On Voltavic Series and the Combination of Gases by Platium," Philosophical Magazine and Journal of Science, vol. 14, pp. 127-130, 1839.
[6] V. M. Vishnyakov, "Proton exchange membrane fuel cells," Vacuum, vol. 80, pp. 1053-1065, 2006.
[7] R. Parsons, VanderNoot,T., "The oxidation of small organic molecules:A survey of recent fuel cell related research," Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 257, pp. 9-45, 1988.
[8] A. Arsalis, "Thermoeconomic modeling and parametric study of hybrid SOFC–gas turbine–steam turbine power plants ranging from 1.5 to 10MWe," Journal of Power Sources, vol. 181, pp. 313-326, 2008.
[9] B. Lin, J. Chen, Y. Ling, X. Zhang, Y. Jiang, L. Zhao, et al., "Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3−δ perovskite cathode and functional graded anode," Journal of Power Sources, vol. 195, pp. 1624-1629, 2010.
[10] Y. Yin, W. Zhu, C. Xia, and G. Meng, "Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells," Journal of Power Sources, vol. 132, pp. 36-41, 2004.
[11] Q. Liu, X. Dong, C. Yang, S. Ma, and F. Chen, "Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells," Journal of Power Sources, vol. 195, pp. 1543-1550, 2010.
[12] Wiki, "http://zh.wikipedia.org/wiki/%E6%B0%A2."
[13] J.-P. Z. San-Ping Jiang, Liliana Apateanu, Karl Foger, "Deposition of chromium species on Sr-doped LaMnO3 cathodes in solid oxide fuel cells," Electrochemistry Communications vol. 1, pp. 394-397, 1999.
[14] V. Thangadurai and P. Kopp, "Chemical synthesis of Ca-doped CeO2—Intermediate temperature oxide ion electrolytes," Journal of Power Sources, vol. 168, pp. 178-183, 2007.
[15] H. T. Hideaki Inaba, "Ceria-based solid electrolytes " Solid State Ionics vol. 83, pp. 1-16, 1996.
[16] S. Yin, M. Li, Y. Zeng, C. Li, X. Chen, and Z. Ye, "Study of Sm0.2Ce0.8O1.9 (SDC) electrolyte prepared by a simple modified solid-state method," Journal of Rare Earths, vol. 32, pp. 767-771, 2014.
[17] M. L. Changrong Xia, "Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs," Solid State Ionics, vol. 152-153, pp. 423-430, 2002.
[18] M. Thompson, "Synthesis and characterisation of δ-Bi2O3 related materials stabilised by substitutions of Ca, Ga, Nb and Re," The College of Engineering and Physical Sciences of the University of Birmingham, 2010.
[19] P. Shuk, Wiemhofer, H.D., Guth, U., Gopel, W. & Greenblatt, M., "Oxide ion conducting solid electrolytes based on Bi2O3," Solid State Ionics, vol. 89, pp. 179-196, 1996.
[20] G. A. T. N.M. Sammes, H. Nafe and F. Aldinger,, "Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity," Europan Ceramic Society, vol. 19, pp. 1801-1826, 1999.
[21] Y. M. Guangshe Li, Liping Li, Shouhua Feng, Minqiang and a. X. Y. Wang, "Solid solubility and transport properties of nanocrystalline(CeO2)(1-x)(BiO1.5)(x) by hydrothermal conditions," Chemistry of Materials, vol. 11, pp. 1259-1266, 1999.
[22] L. L. S. F. M. W. L. Guangshe Li and Z. X. Yaol., "An effective synthetic route for a novel electrolyte:Nanocrystalline solid solutions of (CeO2)(1-x)(BiO1.5)(x)." Advanced Materials, vol. 11, pp. 146-149, 1999.
[23] S. F. Hui Zhao, "Hydrothermal Synthesis and Oxygen Ionic Conductivity of Codoped Nanocrystalline Ce1-xMxBi0.4O2.6-x, M ) Ca,Sr, and Ba," Chem. Mater., vol. 11, pp. 958-964, 1999.
[24] M.-Y. Cheng, D.-H. Hwang, H.-S. Sheu, and B.-J. Hwang, "Formation of Ce0.8Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process," Journal of Power Sources, vol. 175, pp. 137-144, 2008.
[25] 黃國志, "以低溫水熱法合成Ce0.8Bi0.2-xMxO1.9(M=Sm、Er、Dy)固態氧化物燃料電池電解質與其電化學性質之研究," 國立台灣科技大學化學工程系, 2008.
[26] L. Bourja, B. Bakiz, A. Benlhachemi, M. Ezahri, J. C. Valmalette, S. Villain, et al., "Structural and Raman Vibrational Studies ofCeO2-Bi2O3 Oxide System," Advances in Materials Science and Engineering, vol. 2009, pp. 1-4, 2009.
[27] 肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
[28] 曲遠方, 功能陶瓷材料: 曉園出版社有限公司, 2006.
[29] 賴耿陽, 陶瓷材料覆膜技術: 復漢出版社有限公司, 2001.
[30] A. Aravind, M. K. Jayaraj, M. Kumar, and R. Chandra, "The dependence of structural and optical properties of PLD grown ZnO films on ablation parameters," Applied Surface Science, vol. 286, pp. 54-60, 2013.
[31] M. L. M. A. M. DeSantolo, S. Sunshine, B. A. Davidson, R. M. Fleming, P. Marsh and T. Y. Kometani, " Preparation of high Tc and Jc films of Ba2YCu3O7 using laser evaporation of a composite target containing BaF2," Appl. Phys. Lett., vol. 52, p. 1995, 1988.
[32] R. A. R. C. Richard Guarnieri, K. L. Saenger, S. A. Shivashankar, D. S. Yee and J. J. Cuomo, "Thin‐film Bi‐Sr‐Ca‐Cu‐O high‐temperature superconductors using pulsed laser evaporation from sintered disks," Appl. Phys. Lett., vol. 53, p. 532, 1988.
[33] T. V. D. Dijkkamp, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min‐Lee, W. L. McLean and M. Croft, "Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material," Appl. Phys. Lett., vol. 51, p. 619, 1987.
[34] J. B. B. D. K. Fork, F. A. Ponce, R. I. Johnson, G. B. Anderson, G. A. N. Connell, C. B. Eom and T. H. Geballe, "Preparation of oriented Bi‐Ca‐Sr‐Cu‐O thin films using pulsed laser deposition," Appl. Phys. Lett., vol. 53, p. 337, 1988.
[35] J. P. Z. H. S. Kwok, S. Witanachchi, P. Mattocks, L. Shi, Q. Y. Ying, X. W. Wang and D. T. Shaw, "Growth of highly oriented CdS thin films by laser‐evaporation deposition," Appl. Phys. Lett., vol. 52, p. 1095, 1988.
[36] N. B. J. Narayan, R. Singh, O. W. Holland and O. Auciello, "Formation of thin superconducting films by the laser processing method," Appl. Phys. Lett., vol. 51, p. 1845, 1987.
[37] J. N. N. Biunno, S. K. Hofmeister, A. R. Srivatsa and R. K. Singh, "Low‐temperature processing of titanium nitride films by laser physical vapor deposition," Appl. Phys. Lett. , vol. 54, p. 1519, 1989.
[38] J. B. K. Moorjani, F. J. Adrian, B. F. Kim, R. D. Shull, C. K. Chiang, L. J. Swartzendruber, and L. H. Bennett, "Superconductivity in bulk and thin films of La1.85Sr0.15CuO4-δand Ba2YCu3O7-δ," Phys. Rev. B, vol. 36, p. 4036, 1987.
[39] H. Kai, M. Mukaida, S. Horii, A. Ichinose, R. Kita, S. Kato, et al., "Superconducting properties and microstructure of PLD-ErBa2Cu3O7−δ film with BaNb2O6," Physica C: Superconductivity, vol. 463-465, pp. 895-899, 2007.
[40] H. Kai, M. Mukaida, R. Teranishi, N. Mori, K. Yamada, S. Horii, et al., "Effects of growth temperature for superconducting properties and microstructures of PLD-ErBa2Cu3O7−δ film with BaNb2O6," Physica C: Superconductivity, vol. 468, pp. 1854-1857, 2008.
[41] 陳銘堯, "簡介脈衝雷射蒸鍍法," 物理雙月刊, vol. 15, pp. 669-673, 1993.
[42] J.-H. S. K.-K. Kim, H.-J. Jung, W.-K. Choi, S.-J. Park, and J.-H. Song, "The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering," Applied Physic, vol. 87, p. 3573, 2000.
[43] L. Bourja, B. Bakiz, A. Benlhachemi, M. Ezahri, S. Villain, and J. R. Gavarri, "Synthesis and characterization of nanosized Ce1−xBixO2−δ solid solutions for catalytic applications," Journal of Taibah University for Science, vol. 4, pp. 1-8, 2010.
[44] 楊盛發, "以脈衝雷射沉積法製備SDC固態電解質薄膜之電池效能影響研究," 國立東華大學 材料科學與工程研究所, 2015.
[45] 張建涵, "以脈衝雷射沉積法製備鋁摻雜的氧化鋅薄膜與其結構、光學及電學性質之探討," 國立東華大學 材料科學與工程研究所, 2012.
[46] 汪建民, 材料分析: 中國材料科學學會, 1998.
[47] 史美倫, 交流阻抗譜原理及應用: 北京:國防工業出版社, 2001.
[48] 邱. 姚潔宜, 簡仁德, "微結構對於YSZ材料導電特性之影響," 中華民國陶業研究學會, 2007.
[49] Z. Khakpour, A. Yuzbashi, A. Maghsodipour, and K. Ahmadi, "Electrical conductivity of Sm-doped CeO2 electrolyte produced by two-step sintering," Solid State Ionics, vol. 227, pp. 80-85, 2012.
[50] J.-G. Li, T. Ikegami, and T. Mori, "Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors," Acta Materialia, vol. 52, pp. 2221-2228, 2004.
[51] Y. Dong, D. Li, X. Feng, X. Dong, and S. Hampshire, "A high-strength Sm-doped CeO2 oxide-ion conducting electrolyte membrane for solid oxide fuel cell application," RSC Advances, vol. 3, p. 17395, 2013.
[52] D. B. I. Yet-Ming Chiang, W. David Kingery, Physical ceramics: John Wiley & Sons,Inc, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔