跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施志霖
研究生(外文):Jhih-Lin Shih
論文名稱:硫化銦/氧化銦奈米線異質結構合成鑑定與特性分析
論文名稱(外文):Synthesis and Characterization of Indium Sulfide/Indium Oxide Nanowire Heterostructures
指導教授:田禮嘉
指導教授(外文):Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:70
中文關鍵詞:硫化銦氧化銦奈米線異質結構
外文關鍵詞:Indium sulfideIndium oxideNanowireHeterostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功地利用結合物理與化學法在矽基版上合成硫化銦/氧化銦奈米線異質結構,首先利用物理氣相傳輸法在矽基板成長氧化銦奈米線結構,再利用水熱法,以硫乙醯胺(thioacetamide)當作硫離子提供源,將硫化銦成長在氧化銦奈米線表面,其中藉由改變硫化環境酸鹼值能有效地增加硫化銦/氧化銦異質結構殼層硫化銦的厚度。由掃描電子式顯微鏡和X光粉末繞射結果了解其硫化生成的奈米片狀結構為硫化銦,而且在硫化環境為pH 2的時候,氧化銦奈米線能完全地變成奈米片狀結構的硫化銦。從穿透式電子顯微鏡顯微結構結果和X-ray光電子光譜得知本研究的硫化銦/氧化銦異質結構為type II的殼核奈米線異質結構,而且硫化銦的結構為α-In2S3。利用紫外光可見光吸收光譜得知所形成的異質結構擁有良好的可見光吸收能力。在光致螢光激發光譜發現其紅外放光為硫化銦的缺陷放光造成。在瞬態螢光光譜結果中得知硫化銦/氧化銦異質結構確實有增加載子生命週期的效果,能從In2O3的0.12 ns延長到樣品pH 6的0.6 ns。最後可見光光觸媒活性測試得知擁有較長載子生命週期的異質結構(pH 6)擁有較佳的降解效果,其反應速率常數為0.460 (h-1)

In2S3/In2O3 nanowire heterostructures have been successfully synthesized on silicon substrate by combining physical and chemical methods in this study. First, the In2O3 nanowires were grown on silicon substrate by vapor transport process. Then In2S3 were grown onto In2O3 nanowire surfaces using thioacetamide as a source of sulfide ions by hydrothermal method. And the thickness of In2S3 can be increased significantly through adjusting sulfurization pH values. Both scanning electron microscopy and X-ray diffraction results confirm the formation of In2S3 nanosheets/In2O3 nanowire heterosructures by sulfurization. Transmission electron microscopy and X-ray photoe-lectron spectroscopy results show that In2S3/In2O3 nanowire heterostructures are type II core-shell heterostructures, and the crystal structure of In2S3 is α-In2S3. UV/visible absorption spectroscopy results indicate that the In2S3/In2O3 nanowire heterostructures exhibit excellent visible-light absorption property. Photoluminescence results reveal that the near-infrared emissions come from defect emission from In2S3. Time-resolved photoluminescence results indicate that In2S3/In2O3 heterostructures can prolong charge carrier life time from 0.12 ns (In2O3) to 0.6 ns (In2S3/In2O3, pH 6). Finally, visi-ble light photocatalytic activity measurements reveal that the photocatalytic activity is enhanced significantly in In2S3/In2O3 nanowire heterostructure due to a longer charge carrier life time (pH 6), and the reaction rate constant is 0.460 (h-1).
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 前言與動機 1
第二章 文獻回顧 3
2.1 氧化銦基本性質與應用 3
2.2 硫化銦基本性質與應用 4
2.3 硫化銦/寬能隙半導體異質結構性質與應用 5
第三章 實驗配置 11
3.1 實驗藥品和製程設備 11
3.2 實驗步驟 12
3.2.1 基板處理 12
3.2.2 合成氧化銦奈米結構 12
3.2.3 合成硫化銦/氧化銦異質結構 13
3.3 實驗參數 13
3.4 分析儀器 14
3.4.1 場發射掃描式電子顯微鏡(FE-SEM)和能量散佈光譜儀(EDS) 14
3.4.2 X光繞射分析儀(XRD) 14
3.4.3 穿透式電子顯微鏡(TEM) 15
3.4.4 X光光電子光譜儀(XPS) 15
3.4.5 紫外光/可見光吸收光譜儀(UV/visible Spectroscopy) 16
3.4.6 光致螢光光譜儀 (Photoluminescence, PL) 16
3.4.7 穩態/瞬態螢光光譜儀(Time-Resolved Photoluminescence, TR-PL) 17
3.4.8 光觸媒性質實驗 17
第四章 實驗結果與討論 23
4.1 硫化溫度、及硫乙醯胺試劑濃度變化之影響 23
4.1.1 氧化銦奈米線表面形貌 23
4.1.2 硫化銦/氧化銦奈米線異質表面形貌 24
4.1.3 X光繞射晶體結構分析 25
4.1.4 光致螢光光譜分析 26
4.1.5 紫外光/可見光吸收光譜分析 27
4.1.6 可見光光觸媒活性測試 28
4.1.7 小結 29
4.2 pH值變化之影響 30
4.2.1 硫化銦/氧化銦奈米線異質結構形貌和成分分析 30
4.2.2 X光繞射晶體結構分析 31
4.2.3 穿透式電子顯微鏡分析 32
4.2.4 硫化銦/氧化銦奈米線異質結構成長機制 34
4.2.5 紫外光/可見光吸收光譜分析 36
4.2.6 光致螢光光譜分析 37
4.2.7 X光光電子能譜表面分析與異質接面能帶偏移量測 37
4.2.8 時間解析光致螢光激發光譜分析 40
4.2.9 可見光光觸媒活性測試 41
第五章 結論 65
參考文獻 67

1. Y. H. Kim, J. H. Lee, D.-W. Shin, S. M. Park, J. S. Moon, J. G. Nam and J.-B. Yoo, Chem. Commun. 46 (13), 2292-2294 (2010).
2. M. F. Cansizoglu, R. Engelken, H.-W. Seo and T. Karabacak, ACS Nano 4 (2), 733-740 (2010).
3. C. Wei, W. Guo, J. Yang, H. Fan, J. Zhang and W. Zheng, Rsc Adv. 4 (92), 50456-50463 (2014).
4. K. Hara, K. Sayama and H. Arakawa, Sol. Energ. Mater. Sol. Cells 62 (4), 441-447 (2000).
5. P. M. Sirimanne, N. Sonoyama and T. Sakata, Chem. Phys. Lett. 350 (3-4), 211-215 (2001).
6. X. Gan, X. Li, X. Gao, J. Qiu and F. Zhuge, Nanotechnology 22 (30) (2011).
7. S. Khanchandani, S. Kundu, A. Patra and A. K. Ganguli, J. Phys. Chem. C 117 (11), 5558-5567 (2013).
8. C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeisser, J. R. Weber, J. B. Varley and C. G. Van de Walle, New J. Phys. 13, 14 (2011).
9. C.-H. Ho, C.-H. Chan, L.-C. Tien and Y.-S. Huang, J. Phys. Chem. C 115 (50), 25088-25096 (2011).
10. V. Scherer, C. Janowitz, A. Krapf, H. Dwelk, D. Braun and R. Manzke, Appl. Phys. Lett. 100 (21), - (2012).
11. G. Pradeep, K. Fang-Ling, S. Nigel and U. Philipose, Semicond. Sci. Technol. 27 (1), 015015 (2012).
12. M. Mazzera, M. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati and L. Zanotti, Nanotechnology 18 (35) (2007).
13. A. Walsh, J. L. F. Da Silva, S. H. Wei, C. Korber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange and R. G. Egdell, Phys. Rev. Lett. 100 (16), 4 (2008).
14. A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit and T. O. Mason, Materials 3 (11), 4892-4914 (2010).
15. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han and C. W. Zhou, Appl. Phys. Lett. 82 (10), 1613-1615 (2003).
16. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei and C. W. Zhou, Nano Lett. 4 (10), 1919-1924 (2004).
17. C. H. Ho, J. Cryst. Growth 312 (19), 2718-2723 (2010).
18. P. V. Kamat, N. M. Dimitrijevic and R. W. Fessenden, J. Phys. Chem. 92 (8), 2324-2329 (1988).
19. Y.-J. Hsiao, C.-H. Lu, L.-W. Ji, T.-H. Meen, Y.-L. Chen and H.-P. Chi, Nanoscale Res. Lett. 9 (2014).
20. C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M. Muller and H. Tributsch, Thin Solid Films 340 (1–2), 18-23 (1999).
21. R. Diehl and R. Nitsche, J. Cryst. Growth 28 (3), 306-310 (1975).
22. K. Kambas, J. Spyridelis and M. Balkanski, phys. status solidi (b) 105 (1), 291-296 (1981).
23. R. Diehl, C.-D. Carpentier and R. Nitsche, Acta Crystallogr. Sec. B 32 (4), 1257-1260 (1976).
24. Y. He, D. Li, G. Xiao, W. Chen, Y. Chen, M. Sun, H. Huang and X. Fu, J. Phys. Chem. C 113 (13), 5254-5262 (2009).
25. X. Yang, J. Xu, T. Wong, Q. Yang and C.-S. Lee, Phys. Chem. Chem. Phys. 15 (30), 12688-12693 (2013).
26. H. Li, C. Chen, X. Huang, Y. Leng, M. Hou, X. Xiao, J. Bao, J. You, W. Zhang, Y. Wang, J. Song, Y. Wang, Q. Liu and G. A. Hope, J. Power Sources 247, 915-919 (2014).
27. J.-S. Yang, W.-P. Liao and J.-J. Wu, Acs Appl. Mat. Interfaces 5 (15), 7425-7431 (2013).
28. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu and X. Wang, Chem. Soc. Rev. 43 (15), 5234-5244 (2014).
29. C. W. Chang, H. T. Wu, S. H. Huang, C. K. Chen, I. W. Un and T. J. Yen, Acta Mater. 61 (18), 6993-6999 (2013).
30. W. K. Chang, K. K. Rao, H. C. Kuo, J. F. Cai and M. S. Wong, Appl. Catal., A 321 (1), 1-6 (2007).
31. T. Nomura, Y. Kousaka, M. Alonso and M. Fukunaga, J. Colloid and Interface Sci. 223 (2), 179-184 (2000).
32. L.-C. Tien and Y.-Y. Hsieh, Mater. Res. Bull. 60 (0), 690-694 (2014).
33. N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem. 99 (45), 16646-16654 (1995).
34. C. Chen, J. Moir, N. Soheilnia, B. Mahler, L. Hoch, K. Liao, V. Hoepfner, P. O'Brien, C. Qian, L. He and G. A. Ozin, Nanoscale 7 (8), 3683-3693 (2015).
35. N. Ghobadi, Int. Nano Lett. 3 (1), 2 (2013).
36. P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Phys. Rev. B 68 (3), 035104 (2003).
37. R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède and A. Mokrani, Opt. Mater. 27 (4), 647-653 (2005).
38. S.-T. Jean and Y.-C. Her, Cryst. Growth Des. 10 (5), 2104-2110 (2010).
39. J. S. Kim, P. K. H. Ho, D. S. Thomas, R. H. Friend, F. Cacialli, G. W. Bao and S. F. Y. Li, Chem. Phys. Lett. 315 (5–6), 307-312 (1999).
40. X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D. Y. C. Leung, L. Wu and X. Fu, Appl. Catal., B 95 (3–4), 393-399 (2010).
41. Y. Zhang, J. Zhu, F. Liu, G. Wu, J. Wei, L. Hu, Y. Huang, C. Zhang, J. Tang and S. Dai, J. Photochem. Photobiol., A 281 (0), 53-58 (2014).
42. S. Rengaraj, S. Venkataraj, C.-w. Tai, Y. Kim, E. Repo and M. Sillanpaa, Langmuir 27 (9), 5534-5541 (2011).
43. H. W. Nesbitt and I. J. Muir, Geochim. Cosmochim. Acta 58 (21), 4667-4679 (1994).
44. P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell and C. F. McConville, Phys. Rev. Lett. 101 (11), 116808 (2008).
45. T. Schulmeyer, A. Klein, R. Kniese and M. Powalla, Appl. Phys. Lett. 85 (6), 961-963 (2004).
46. C. Jia, Y. Chen, Y. Guo, X. Liu, S. Yang, W. Zhang and Z. Wang, Nanoscale Res. Lett. 6 (1), 316 (2011).
47. E. Edri, H. Cohen and G. Hodes, ACS Appl. Mater. Interfaces 5 (11), 5156-5164 (2013).
48. D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh and A. A. Sokol, Nat. Mater. 12 (9), 798-801 (2013).
49. M.-Y. Chen and Y.-J. Hsu, Nanoscale 5 (1), 363-368 (2013).
50. D. Tsokkou, A. Othonos and M. Zervos, J. Appl. Phys. 106 (8), 084307 (2009).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top