跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾鏞
研究生(外文):Yung-Tseng
論文名稱:散佈強化相與稀土元素對於機械合金化W-Ti ODS 合金之影響
論文名稱(外文):Effect of dispersed particles and rare earth elements on mechanically alloyed W-Ti ODS alloy
指導教授:陳俊良陳俊良引用關係
指導教授(外文):Chun-Liang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:94
中文關鍵詞:機械合金W基ODS合金稀土元素
外文關鍵詞:Mechanical alloyingW-based ODS alloyRare earth elements
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
W基ODS合金為理想的材料應用於核融合第一層保護層,由於W合金的高熔點,優異的抗潛變能力與良好的耐輻射性,本實驗將氧化物散佈強化相導入W基材料裡面使用機械合金製程來進行散佈強化,可以提高W合金的高溫強度和穩定性以及分散輻射腫脹,而Ti的固溶對於W合金的延展性扮演著重要的角色,由於添加Ti於W基裡面的用途為可以增加抑制金屬之間的擴散,而添加於W中Ti的添加可以使W合金更緻密,會抑制W的晶粒成長。本實驗中對於Ti含量(1, 2, 5, 10wt.%)的變化進行研究,結果顯示添加(1, 2wt.%)Ti會改善顯微結構的均勻性,硬度,緻密性,而添加(5~10wt.%)Ti則是有孔洞與不緻密的顯微結構。進一步研究W-Ti合金添加三種不同強化相(Y2O3, TiC, Y2Ti2O7)來探討顯微結構與機械性質之變化,結果顯示添加TiC強化相會形成粗大之析出相,而添加Y2O3,強化相顆粒則會得到均勻與細化的顯微結構。此外,本實驗亦探討火花電漿燒結(SPS)製程,所製備的材料易形成(W,Ti)C1-x相使機械性質高於傳統燒結製程。添加La稀土元素的影響也包含於此研究中,藉由球磨與燒結過程中形成In-situ La2O3顆粒,而此相會與基地形成(coherence)的結構而強化,本實驗發現隨著La含量的添加會使硬度越來越高,材料中Ti-La-O氧化物的形成也顯著影響材料的機械性質。
Tungsten alloy is a good candidate material for the first-wall of fusion rectors due to its high meting point, excellent creep property and good radiation resistance. Nano-oxide particles can be introduced and uniformly dispersed in the tungsten-based materials as dispersion strengthening, which can enhance high temperature strength and stability, as well as good radiation-induced swelling resistance. Ti plays an important role in determining ductility of tungsten alloys by solid solution and grain refinement. In this present work, the variation of Ti content (1, 2, 5 and 10 wt.%) was investigated. The results show that significant improvement of microstructure uniformity, hardness, densification, and ductility has been achieved by adding a lower Ti content. However, high amount of Ti concentration leads to formation of a large number of porosity and lower densification of materials. W-Ti alloy dispersed with three different particles (Y2O3, TiC, and Y2Ti2O7) was further investigated. The results show that addition of TiC particles in W-Ti alloys causes the coarsening of precipitates; however, introduction of Y2O3 oxide particles encourages uniform microstructure and grain refinement. Spark plasma sintering (SPS) was also used in this study. The formation of (W,Ti)C1-x phase was found in the SPS sample and significantly improve mechanical properties. Finally, addition of the rare earth element La in W-based alloys was investigated. In-situ oxide particles (La2O3) can therefor be formed during ball milling and subsequent sintering process. The dispersed oxides could be coherent with W matrix, which enhance material properties. The results also suggested that a higher La content in W-Ti alloys leads to a higher hardness value. The formation of Ti-La-O oxides can also have a significant influence on mechanical properties of materials.
目錄
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
第二章 文獻回顧 3
2.1 W合金 3
2.3 W-Ti合金的選擇 4
2.3.1 Ti添加於W的特性 5
2.4 不同強化相的特性 6
2.4.1 Y2O3/La2O3 6
2.4.2 TiC 6
2.4.3 Y2Ti2O7 7
2.4.4 Y/La 7
2.5 添加強化相量對合金的影響 8
2.5.1 強化相含量多寡 8
2.5.2 強化相大小 8
2.6 火花電漿燒結 8
2.7 機械合金 9
2.8 粉末冶金 11
2.9 散佈強化 13
第三章 實驗方法與步驟 21
介紹 21
3.1 第一階段:W基ODS添加不同Ti含量對於顯微結構之影響 21
3.1.1粉體成分 21
3.1.2粉末配製 22
3.1.3機械合金球磨 22
3.1.4壓錠 22
3.1.5燒結 22
3.1.6鑲埋研磨拋光 23
3.1.7掃描式電子顯微鏡(S-3400N)拍攝 23
3.1.8 X-射線繞射分析(XRD)鑑定 24
3.1.9維氏硬度測量 24
3.1.10奈米壓痕 24
3.2 第二階段: 不同強化相與含量對W-Ti ODS合金之影響 24
3.2.1粉體成分 25
3.2.2實驗步驟 25
3.3 第三階段: 火花電漿燒結製備W-Ti ODS合金之研究 26
3.3.1粉體成分 26
3.3.2實驗步驟 26
3.4 第四階段: W-Ti合金添加稀土元素La對於顯微結構與機械性質之影響 27
3.4.1粉體成分 27
3.4.2實驗步驟 27
3.5 使用設備以及分析儀器 28
3.5.1手套箱 28
3.5.2行星式球磨機 28
3.5.3壓錠機 29
3.5.4高溫管型爐 29
3.5.5掃描式電子顯微鏡(SEM) 29
3.5.6 X光繞射分析儀(XRD) 29
3.5.7維氏硬度機 30
3.5.8奈米壓痕 30
第四章 實驗結果與討論 39
4.1第一階段 W基ODS添加不同Ti含量對於顯微結構之影響 39
4.1.1 SEM粉末分析 39
4.1.2 XRD粉末分析 39
4.1.3 SEM塊材分析 40
4.1.4 XRD塊材分析 41
4.1.5維氏硬度分析 41
4.1.6奈米壓痕硬度與彈性模數 41
4.1.7奈米壓痕loading/ unloading curves 42
4.1.8小結 42
4.2 第二階段 不同強化相與含量對W-Ti ODS合金之影響 43
4.2.1 SEM粉末分析 43
4.2.2 XRD粉末分析 43
4.2.3 SEM塊材分析 44
4.2.4維氏硬度分析 46
4.2.5奈米壓痕硬度分析 46
4.2.6彈性模數分析 46
4.2.7奈米壓痕loading /unloading curves 47
4.2.8小結 47
4.3第三階段 火花電漿燒結製備W-Ti ODS合金之研究 49
4.3.1 SPS塊材SEM分析 49
4.3.2 SPS塊材XRD分析 49
4.3.3一般燒結塊材SEM分析 49
4.3.4 維氏硬度分析 50
4.3.5奈米壓痕硬度分析 50
4.3.6奈米壓痕loading / unloading curves 51
4.3.7不同強化相SPS塊材SEM分析 51
4.3.8不同強化相SPS塊材XRD分析 52
4.3.9不同強化相SPS硬度分析 52
4.3.10奈米壓痕硬度與彈性模數 52
4.3.11奈米壓痕loading / unloading curves 53
4.3.12小結 53
4.4第四階段 W-Ti合金添加稀土元素La對於顯微結構與機械性質之影響 55
4.4.1粉末SEM分析 55
4.4.2粉末XRD分析 55
4.4.3塊材SEM分析 56
4.4.4塊材XRD分析 58
4.4.5維氏硬度分析 58
4.4.6奈米壓痕硬度分析 58
4.4.7奈米壓痕彈性模數 59
4.4.8奈米壓痕loading/unloading curves 59
4.4.8小結 60
第五章 結論 89
參考文獻 91

[1]Y.Ueda, K.Tobita, Y. Katoh, Journal of Nuclear Materials, 313-316(2003)32-41
[2] T.E.Tietz, J.W. Wilson, Behaviour and Properties of Refractory Metals,(1965)
[3] M. Rieth, S.L. Dudarev, S.M. Gonzalez de Vicente, etc., Journal of Nuclear Materials 442 (2013) S173-S180
[4]L Veleva, thesis EPFL no. 4995, 2011
[5]V. Livramento, D. Nunes, J.B. Correia, P.A. Carvalhoa, U. Mardolcar, R. Mateus, K. Hanada, N. Shohoji, H. Fernandes, C. Silva, E. Alves. Journal of Nuclear Materials 416 (2011) 45–48
[6] Tongjai Chookajorn, Heather A.Murdoch, Christopher A.Schuh, SCIENCE 337 (2012) 951-953
[7] M.A. Monge, M.A. Auger, T. Leguey, Y. Ortega, L. Bolzoni, E. Gordo, R. Pareja, Journal of Nuclear Materials 386–388 (2009) 613–617
[8] M.V. Aguirre, A. Martín, J.Y. Pastor, J. LLorca, M.A. Monge, R. Pareja, Journal of Nuclear Materials 404 (2010) 203–209
[9] M.V. Aguirre, A. Martín, J.Y. Pastor, J. LLorca, M.A. Monge, R. Pareja, Journal of Nuclear Materials 417 (2011) 516–519
[10] M.V. Aguirre, A. Martín, J.Y. Pastor, J. LLorca, M.A. Monge, R. Pareja,, METALLURGICAL AND MATERIALS TRANSACTIONS A, 40A (2009) 2283-2290
[11] R.J.Gutmann, T.P.Chow, A.E.Kaloyeros, Thin Solid Films 262 (1995) 177-186
[12] G.Raghavan, C.Chiang, P.B.Anders, Thin Solid Films, 262 (1995) 168-172
[13] A.G. Dirks, R.A.M. Wolters, A.J.M. Nellissen, Thin Solid Films 193–194 (1990) 201-210
[14] W. Qingxiang, F. Zhikang, Y. Yi, CHINESE JOURNAL OF MATERIALS RESEARCH, 23(2009) 294-299
[15] W. Qing-xiang, F. Zhi-kang, Y. Yi, The Chinese Journal of Nonferrous Metals, 19(2009) 530-537
[16] M. Faleschini, H. Kreuzer, D. Kiener, R. Pippan, J. Nucl. Mater. 367 (2007) 800-805.
[17] M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina, T.
Igarashi, Mater. Sci. Eng. A 214 (1996) 174–176.
[18] M. Mabuchi, K. Okamoto, N. Saito, T. Asahina, T. Igarashi, Mater. Sci. Eng. A 237 (1997) 241–249.
[19] Z.M. Xie, R. Liu, S. Miao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Journal of Nuclear Materials 464 (2015) 193–199
[20] M. Battabyal, R. Schäublin, P. Spätig, N. Baluc, Materials Science and Engineering: A 538 (2012) 53–57
[21] Guoquan Zhang, Dongdong Gu ,Science 273(2013) 364– 371
[22] Xiang Liu, Jiming Chen, Youyun Lian, Jihong Wu, Zengyu Xu, Nianman Zhang, Quanming Wang, Xuro Duan, Zhanhong Wang, Jinming Zhong, Journal of Nuclear Materials, 442 (2013) 309-312
[23] H. Kurishita, Y. Amano, S. Kobayashi, K. Nakai, H. Arakawa, Y. Hiraoka, T. Takida, K. Takebe, H.Matsui, Journal of Nuclear Materials, 367–370 (2007) 1453–1457
[24] L.F. He, J. Shirahata, T. Nakayama, T. Suzuki, H. Suematsu, I. Ihara, Y.W. Bao, T. Komatsu and K. Niihara, Scripta Materialia 64 (2011) 548–551
[25] M. Ohnuma, J. Suzuki, S. Ohtsuka, S.-W. Kim, T. Kaito, M. Inoue, H. Kitazawa, Acta Materialia, 57 (2009) 5571–5581
[26] L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Fusion Engineering and Design 84 (2009) 1920–1924
[27] Brown PH, Rathjen AH, Graham RD, Tribe DE. Chapter 92 rare earth elements in biological systems. Handbook on the physics and chemistry of rare earths; (1990) 423–452.
[28] Mingyue Zhao, Zhangjian Zhou, Qingming Ding, Ming Zhong, Kameel Arshad, International Journal of Refractory Metals and Hard Materials, 48 (2015) 19–23
[29] Youngmoo Kim, Kyong Ho Lee, Eun-Pyo Kim Dong-Ik Cheong, Soon Hyung Hong
International Journal of Refractory Metals and Hard Materials, 27 (2009) 842–846
[30] Taiquan Zhang, Yujin Wang, Yu Zhou, Guiming Song, International Journal of Refractory Metals &; Hard Materials, 27 (2009) 14–19
[31] Jae-Hee Kim, Moonsu Seo, Shinhoo Kang, Int. Journal of Refractory Metals and Hard Materials, 35 (2012) 49–54
[32] Z. A. Munir, Journal of Materials Synthesis and Processing, 8 (2000) 189–196.
[33] J. R. Groza and A. Zavaliangos, Reviews on Advanced Materials Science, 5 (2003) 24–33.
[34] N. Saheb, Z. Iqbal, A. Khalil et al., Journal of Nanomaterials, 2012 (2012) 13.
[35] M. Nygren, Z. Shen, Solid State Sci, 5 (2003) 125–131
[36] G. Maizza, S. Grasso, Y. Sakka, T. Noda, O. Ohashi, Ceram Center, 8 (2007) 644–654

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top