跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高煒豪
研究生(外文):Wei-Hoa Goa
論文名稱:氮化鋁鎵/氮化鎵高電子遷移率電晶體之硫化處理與熱穩定度之研究
論文名稱(外文):Investigation of Sulfide Treatment and Thermal Stability on AlGaN/GaN High Electron Mobility Transistor.
指導教授:林育賢林育賢引用關係
指導教授(外文):Yu-Shyan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:63
中文關鍵詞:氮化鋁鎵/氮化鎵高電子遷移率電晶體硫化氨硫化處理
外文關鍵詞:AlGaN/GaNHigh electron mobility transistor(NH4)2Sxsulfide treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討利用硫化銨溶液披覆於氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究。藉由建構硫化銨溶液的表面披覆技術及蕭特基閘極金屬工程,完整的探討其對元件特性之影響,包含直流及熱穩定度。實驗上,所研製的元件展現出良好的元件特性、高溫操作能力及溫度不相依性。而這些優點顯示硫化處理適合應用在氮化鋁鎵/氮化鎵高電子遷移率電晶體元件製程中。
  首先,在氮化鋁鎵/氮化鎵高電子遷移率電晶體上,使用硫化銨溶液對氮化鋁鎵材料進行表面披覆處理,研究其對元件特性所造成的影響,並將其結果與傳統製程元件做比較。就氮化鋁鎵材料而言,硫化處理能更進一步地減少表面復合速度及表面態位密度。因此,具有表面硫化披覆結構之元件在直流、微波及不同溫度環境下均顯示出良好的操作特性。
其次,探討不同溫度環境下表面披覆結構對氮化鋁鎵/氮化鎵高電子遷移率電晶體元件特性所造成的影響。在製程中對元件之氮化鋁鎵蕭特基接觸層表面進行披覆處理,此步驟能夠有效清除原生氧化物,於氮化鋁鎵表面形成Ⅲ-硫鍵結物保護層,進而避免氮化鋁鎵表面因接觸空氣而再度氧化。實驗結果顯示,元件經過表面披覆處理之後可得到較佳的元件特性、高溫操作能力及相對較佳的可靠度及熱穩定度。
在本研究中,我們成功的將後硫化處理應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體,並且有效的提升元件直流與變溫特性,使其可以應用的更加廣泛。

This research proposes the investigation of using the (NH4)2Sx solution to form the AlGaN surface passivation on the AlGaN/GaN high electron mobility transistors (HEMTs). Through the surface passivation and Schottky gate metals engineering, the device characteristics including the DC and thermal stability performance are investigated. Experimentally, the studied devices show good device characteristics, high temperature operation capability, and relatively temperature-insensitive behaviors. These advantages suggest that the proposed sulfide treatment have high potential for the fabrication of AlGaN/GaN HEMTs.
First, the temperature-dependent characteristics of AlGaN/GaN high electron mobility transistors (HEMTs), using the (NH4)2Sx solution to form the AlGaN surface passivation, are studied and demonstrated. For promising wide-gap AlGaN material, the surface recombination velocity and surface states are reduced by sulfur passivation. Hence, the sulfur-passivated devices show improved DC and microwave performance with wide operation region. In addition, the remarkably lower temperature variation coefficients are observed over the operating temperature ranged from 300 to 510K.
Second, the temperature-dependent characteristics of formal-passivated AlGaN/GaN high electron mobility transistors (HEMTs) are studied and demonstrated. Based on the surface covering with sulfur layers, the formal passivation is employed to remove the native oxide on the AlGaN surface and prevent the surface from oxidation against ambient atmosphere over a long period of time. It is known that, from experimental results, the formal-passivated HEMTs exhibit better device performance, higher temperature operation capability, and relatively long-term and thermally stable characteristics.
In this research, we successfully applied the sulfide treatment to Sulfur passivation-AlGaN/GaN high electron mobility transistors. The process can improve the DC and temperature-dependent characteristics effectively and make its application more comprehensive.

Abstract III
Contents V
Table Captions VII
Figure Chapters IX
Chapter 1 Introduction 1
1-1 Backgroundand Motivation of Research 1
1-2 Organization 3
Chapter 2 AlGaN/GaN Heterostructure 5
2-1 GaN-Base device 5
2-2 Polarization of Nitride Crystal 5
2-3 AlGaN/GaN Heterostructure 8
Chapter 3 Device Structure and Fabrication Process 11
3-1 Device Structure 11
3-2 Fabrication Process 13
3-2-1 Mesa Isolation 15
3-2-2 Source and Drain Ohmic Contacts 17
3-2-3 Gate Schottky Contact 18
3-2-4 Sulfide treatment with (NH4)2Sx (Sulfur passivation) 19
Chapter 4 AlGaN/GaN HEMT and Sulfur treatment-HEMT 21
4-1 DC Characteristics 21
4-1-1 Output Characteristics 21
4-1-2 Transfer Characteristics 24
4-1-3 Three-terminal off-state Breakdown Voltage Characteristics 25
4-1-4 Two-Terminal Gate -Drain Breakdown and Leakage Current Characteristics 26
4-1 Temperature-Dependent DC Characteristics 30
4-1-1 Temperature-Dependent Output Characteristics 31
4-1-2 Temperature-Dependent Transfer Characteristics 34
4-1-3 Temperature-Dependent Three-terminal off-state Breakdown Voltage Characteristics 41
4-1-4 Temperature-Dependent Two-Terminal Gate-drain Breakdown and Leakage Current Characteristics 44
Chapter 5 Conclusion and future work 53
5-1 Conclusion 53
5-2 future work 54

References 55
[1] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, and Ilesanmi Adesida, “AlGaN/GaN HEMTs on SiC with fT of over 120 GHz,” IEEE Electron Device Lett., vol. 23, pp. 455–457, Aug. 2002.
[2] W. Lu, S. Member, V. Kumar, E. L. Piner, and I. Adesida, “DC, RF, and microwave noise performance of AlGaN–GaN field effect transistors dependence of aluminum concentration,” IEEE Trans. Electron Devices, vol. 50, pp. 1069–1074, Apr. 2003.
[3] Y. F. Wu, B. P. Keller, S. Keller, N. X. Nguyen, M. Le, C. Nguyen and T. J. Jenkins, “Short channel AlGaN/GaN MODFET’s with 50-GHz and 1.7-W/mm output-power at 10 GHz,” IEEE Electron Device Lett., vol. 18, no. 9, pp. 438–440, Sep. 1997.
[4] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 77, pp. 250–252, Jul. 2000.
[5] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 566–566, Mar. 2001.
[6] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A study on current collapse in AlGaN/GaN HEMTs induced by bias stress,” IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2015–2020, Oct. 2003.
[7] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, pp. 465–471, Mar. 2001.
[8] S. Mizuno, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, “Large gate leakage current in AlGaN/GaN high electron mobility transistors,” J. Appl. Phys., vol. 41, pp. 5125–5126, Aug. 2002.
[9] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 21, no. 6, pp. 268–270, Jun. 2000.
[10] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, pp. 465–471, Mar. 2001.
[11] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars and U. K. Mishra, “AlGaN/AlN/GaN high-power microwave HEMT,” IEEE Electron Device Letters, vol. 22, no. 10, pp. 457–259, Oct. 2001.
[12] M. S. SHUR, “GaN based transistors for high power applications,” Solid-State Electronics, vol. 42, no. 12, pp. 2131–2138, Feb. 1998.
[13] H. Xing, S. Keller, Y. F. Wu, L. McCarthy, I. P. Smorchkova, D. Buttari, R. Coffie, D. S. Green, G. Parish, S. Heikman, L. Shen, N. Zhang, J. J. Xu, B. P. Keller, S. P. DenBaars and U. K. Mishra, “Gallium nitride based transistors,” Journal of Physics, vol. 13, pp. 7139–7157, July. 2001.
[14] S. Karmalkar and U. K. Mishra, “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Trans. Electron Devices, vol. 48, no. 8, pp. 1515–1120, Aug. 2001.
[15] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. D. Via, M. J. Yannuzzi, J. S. Sewell, R. W. Dettmer, T. J. Jenkins, R. F. Davis, J. Yang, M. A. Khan and S. C. Binari, “High performance 0.14 um gate-length AlGaN/GaN power HEMTs on SiC,” IEEE Electron Device Letters, vol. 24, no. 11, pp. 677–679, Nov. 2003.
[16] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, H. Ohashi, “High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior,” IEEE Trans. Electron Devices, vol. 50, pp. 2528–2531, Dec. 2003.
[17] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., vol. 84, pp. 613–615, Jan. 2004.
[18] N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 7139–7157, Sep. 2000.
[19] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren and J. M. Van Hove, “Effects of interfacial oxides on schottky barrier contacts to n- and p-type GaN,” Appl. Phys. Lett. 1999, 75, 4130–4132.
[20] T. Hashizume, R. Nakasaki, S. Ootomo, S. Oyama, H. Hasegawa, “Surface characterization of GaN and AlGaN layers grown by MOVPE.” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 80, pp. 309-312, 2001.
[21] Y. S. Lin, Y. T. Lin, Y. W. Huang, “Electrical, optical and surface properties of P2S5/(NH4)2Sx+Se-treated doped-channel field-effect transistors with double etch-stop layers,” Thin Solid Films, vol. 519, pp. 3388-3392, 2011.
[22] H. Oigawa, J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of Ш-V compound semiconductors,” Jpn. J. Appl. Phys., vol. 30, pp. L322-L325, 1991.
[23] X. Zhang, A. Z. Li, C. Lin, Y. L. Zheng, G. Y. Xu, M. Qi, and Y. G. Zhang, “The effects of (NH4)2S passivation treatments on the dark current-voltage characteristics of InGaAsSb PIN detectors,” J. Crystal Growth, vol. 251, pp. 782-786, 2003.
[24] J. Fan, Y. Kurata, and Y. Nannichi, “Marked reduction of the surface/interface states of GaAs by (NH4)2Sx treatment,” Jpn. J. Appl. Phys., vol. 28, pp. L2255-L2257, 1989.
[25] D. A. Deen, D. F. Storm, R. Bass, D. J. Meyer, D. S. Katzer, S. C. Binari, J. W. Lacis, and T. Gougousi, “Atomic layer deposited Ta2O5 gate insulation for enhancing breakdown voltage of AlN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 98, pp. 023506-3, Jan. 2011.
[26] C. Y. Tsai, T. L. Wu, and Albert Chin, “High-performance GaN MOSFET with high-κ LaAlO3/SiO2 gate dielectric,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 35–37, Jan. 2012.
[27] D. J. Meyer, D. A. Deen, D. F. Storm, M. G. Ancona, D. S. Katzer, R. Bass, J. A. Roussos, B. P. Downey, S. C. Binari, T. Gougousi, T. Paskova, E. A. Preble, and K. R. Evans, “High electron velocity submicrometer AlN/GaN MOS-HEMTs on freestanding GaN substrates,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 199–201, Nov. 2013.
[28] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, Aug. 2008.
[29] L. Pang, Y. Lian, D. S. Kim, J. H. Lee, and K. Kim, “AlGaN/GaN MOSHEMT with high-quality gate–SiO2 achieved by room-temperature radio frequency magnetron sputtering,” IEEE Trans. Electron Devices, vol. 59, no. 10, pp. 2650–2655, Oct. 2012.
[30] O. Ambacher J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222–3233, Mar. 1999.
[31] X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng and J. M. Li, “Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates,” Solid-State Electronics, vol. 49, pp. 1387–1390, Jun. 2005.
[32] B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack, P. P. Chow, “Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3,” Solid-State Electronics, vol. 46, pp. 467–476, 2002.
[33] Y. Y. Wong, Y. S. Chiu, T. T. Luong, T. M. Lin, Y. T. Ho, Y. C. Lin, E. Y. Chang, “Growth and fabrication of AlGaN/GaN HEMT on SiC Substrate,” ISC2012 Proc, pp. 729–732, 2012.
[34] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Letters, vol. 20, no. 4, pp. 161–163, Apr. 1999.
[35] J. C. De Jaeger, S. L. Delage, G. Dambrine, M.A Di Forte Poisson, V. Hoel, S. Lepilliet, B. Grimbert, E. Morvan,Y. Mancuso, G. Gauthier, A. Lefrançois, Y. Cordier, “Noise assessment of AlGaN/GaN HEMTs on Si or SiC substrates application to X-band low noise amplifiers,” GAAS Symposium-Paris, 2005.
[36] Y. S. Lin, S. F. Lin, and W. C. Hsu,” Microwave and power characteristics of AlGaN/GaN/Si high-electron mobility transistors with HfO2 and TiO2 passivation,” Semicond. Sci. Tech., vol. 30, p. 015016 1-4, 2015.
[37] Y. S. Lin, Y. J. Jou, and P. C. Huang, “Stability study and effect of passivation on InP/InGaAs double heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 94, p. 063506, 2009.
[38] Y. S. Lin, S. K. Liang, and Y. S. Lin, “Performance of surface and gate engineered AlGaAs/InGaAs pseudomorphic high-electron mobility transistors,” J. Electrochem. Soc., vol. 156, pp. H401-H408, 2009.
[39] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “A simple gate-dielectric fabrication process for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 997-999, 2012.
[40] R. V. Booth, M. H. White, H. S. Wong, and T. J. Krutsick, “The effect of channel implants on MOS transistor characterization,” IEEE Transactions on Electron Devices, vol. 34, no. 12, pp. 2501-2509, Dec. 1987.
[41] T. B. Wang, W. C. Hsu, J. L. Su, R. T. Hsu, Y. H. Wu, Y. S. Lin, and K. H. Su, “Comparison of Al0.32Ga0.68N/GaN heterostructure field-effect transistors with different channel thicknesses,” J. Electrochem. Soc., vol. 154, p. H131, 2007.
[42] J. Kuzmik, G. Konstanatinidis, S. Harasek, S. Hascik, E. Bertagnolli, A. Georgakilas, and D. Pogany,“ZrO2/(Al)GaN metal-oxide- semiconductor structures: characterization and application,” Semicond. Sci. Technol., vol. 19, no. 12, pp. 1364-1368, 2004.
[43] K. T. Lee, C. F. Huang, J. Gong, and B. H. Liou, “Electrical characteristics of Al2O3/TiO2/Al2O3 nanolaminate MOS capacitor on p-GaN with post metallization annealing and (NH4)2SX treatments,” IEEE Electron Device Lett., vol. 30, no. 9, pp. 907-909, 2009.
[44] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV breakdown voltage for AlGaN/GaN high-electron-mobility transistors on silicon substrate,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1375-1377, 2012.
[45] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 213-220, 2013.
[46] S. Arulkumaran, G. I. Ng, S. Vicknesh, “Enhanced breakdown voltage with high Johnson's figure-of-merit in 0.3-T-gate AlGaN/GaN HEMTs on silicon by treatment,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1364-1366, 2013.
[47] H. C. Chiu, Y. C. Huang, C. W. Chen, L. B. Chang, “Electrical characteristics of passivated pseudomorphic HEMTs with P2S5/(NH4)2SX pretreatment,” IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 721-726, 2013.
[48] H. C. Chiu, Y. C. Huang, C. W. Chen, L. B. Chang, “High-k praseodymium oxide passivated AlGaN/GaN MOSFETs using P2S5/(NH4)2SX + UV interface treatment,” Microel. Rel., vol. 51, issue 2, pp. 381-385, 2011.
[49] W. Lu, V. Kumar, R. Schwindt, E. Piner, I. Adesida “A comparative study of surface passivation on AlGaN/GaN HEMTs,” Microel. Rel., vol. 46, issue 9, pp. 1441-1444, 2002.
[50] B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack, P. P. Chow, “Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3,” Microel. Rel., vol. 46, issue 4, pp. 467-476, 2002.
[51] M. K. Chattopadhyay, and S. Tokekar, “Temperature and polarization dependent polynomial based non-linear analytical model for gate capacitance of AlmGa1-mN/GaN MODFET,” Solid-State Elctron., vol. 50, pp. 220-227, 2006.
[52] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal-stability improvement of a sulfur-passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. on Device and Materials Reliability., vol. 6, no. 1, pp. 52-59, 2006.
[53] A. Fontsere, A. P. Tomas, M. Placidi, N. Baron, S. Chenot, J. C. Moreno, S. Rennesson, and Y. Cordier, “Molecular beam epitaxial AlGaN/GaN high electron moblility transistors leakage thermal activation on silicon and sapphire, “Appl. Phys. Lett., vol. 102, pp. 093503-1-093503-5, 2013.
[54] A. Fontserè, A. P. Tomás, M. Placidi, N. Baron, S. Chenot, J. C. Moreno, S. Rennesson, and Y. Cordier, “Molecular beam epitaxial AlGaN/GaN high electron mobility transistors leakage thermal activation on silicon and sapphire,” Appl. Phys. Lett., vol. 102, pp. 093503-1-093503-5, 2013.
[55] C. S. Lee, C. T. Hung, B. Y. Chou,W. C. Hsu, H. Y. Liu, C. S. Ho and Y. N. Lai, “Comparative studies of MOS-gate/oxide-passivated AlGaAs/InGaAs pHEMTs by using ozone water oxidation technique,” Semicond. Sci. Technol., vol. 27, no. 6, pp.065006-1-065006-7, 2012.
[56] C. S. Lee, “Comparative studies on temperature-dependent characteristics of passivated In0.2Ga0.8AsSb/GaAs high electron mobility transistors,” J. Electrochem. Soc., vol. 156, issue 2, pp. 87-91, 2009-02.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top