(18.210.12.229) 您好!臺灣時間:2021/03/03 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何易恒
研究生(外文):Yi-Heng Ho
論文名稱:激子放射的光學抑制
論文名稱(外文):Optical quench of excitonic emission
指導教授:黃玉林
指導教授(外文):Yue-Lin Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:88
中文關鍵詞:激子光學抑制
外文關鍵詞:excitonopticalquenchndhu
相關次數:
  • 被引用被引用:1
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
直接能隙(direct-band-gap)半導體可高效率地轉換能量,以電磁波/光的形式釋放電子激態能量,一方面可應用於光電元件,另一方面允許利用非破壞性的光學觀察理解電子能量弛放的物理過程。新近研究發現,亞能隙激發可抑制激子(exciton)發光放射,具有開發如光學開關等新穎元件的潛力。激子放射的抑制機制涉及能隙中電子能態的電荷游離,提供晶體缺陷的物理訊息。本研究以具有直接能隙的氧化鋅(Zinc oxide,ZnO)作為觀察激子放射抑制的模型系統,其激子結合能(60 meV)遠高於室溫熱能,故於室溫下仍有極高的發光效率,有利於開發高效率室溫光電元件。本研究實現變溫光學量測系統的設計/組裝,建立以CCD攝影術擷取光譜與校準波長的方法。低溫與室溫的光致螢光與激子放射抑制觀察發現,激子放射能譜特徵隨溫度變化受激子-聲子耦合作用與晶體缺陷的影響。根據束縛激子放射與聲子印記放射的光譜特徵建立激子放射光譜模型,利用光譜擬合推估能隙與激子-聲子耦合強度。本研究結果可檢證缺陷對激子-聲子耦合強度影響的模型以及激子放射抑制機制。
Direct-band-gap semiconductor can efficiently convert energy. In the form of electromagnetic wave/ light electronic excited state energy release. On the one hand can be applied to the opto-electronic element, on the other hand allows the use of non-destructive optical observation understanding physical processes of electron energy chill out. Recent studies have found that second-band-gap excitation can quenching excitonic emission. Has the potential to develop novel components such as optical switches. The mechanism of the quench effect involving of electron energy state ionization those in the band gap.It provide physical message of crystal defects. This study used ZnO which has a direct band gap as a model system to observe the quench of excitonic emission. Its exciton binding energy (60 meV) is much higher than the thermal energy at room temperature. Therefore, it still has high luminous efficiency at room temperature. In this study, we achieve optical measurement system design / assembly which can change temperature. Establish a CCD photography to capture the spectral and the wavelength calibration method. We observe the quench of excitonic emission in the low temperature and room temperature. Exciton radiation spectrum characteristics change with temperature influence of exciton-phonon coupling and the crystal defects. According to spectral characteristics of neutral donor-bound excitons and phonon replicas excitons established exciton emission spectrum model. To achieve energy gap and exciton-phonon coupling strength by spectral fitting. The results of this study can to check and prove the model of defects affect on the exciton - phonon coupling strength and the mechanism of the quench effect on excitonic emission.
摘要 ....................................... I
Abstract .................................. II
目錄 ....................................... III
表目錄 ..................................... V
圖目錄 ..................................... VI
第1章 文獻回顧與問題研究 ...................... 1
1.1 氧化鋅的結構與性質 ...................... 3
1.2 光致螢光(Photoluminescence;PL) ........ 4
1.3 激子放射的抑制機制 ....................... 6
1.4 研究問題 ............................... 7
第2章 測量方法 ............................... 11
2.1 變溫光學量測系統 ........................ 11
2.2 光學抑制 ............................... 23
2.3 波長校準 ............................... 25
第3章 實驗結果 ............................... 29
3.1 方法與觀察模式的影響 ..................... 31
3.1.1 溫度效應 ............................ 34
3.2 光學抑制 ............................... 44
3.2.1 模式A亞能隙激發對螢光光譜的影響 ......... 45
3.2.2 模式A亞能隙激發與激子螢光抑制弛放 ....... 53
3.2.3 模式B亞能隙激發對螢光光譜的影響 ......... 57
第4章 討論與結論 ............................. 63
4.1 激子放射機制 ............................ 64
4.2 光子抑制機制 ............................ 70
4.3 結論 ................................... 72
4.4 未來研究 ................................ 73
附錄A 樣品Sap7、Sap8、Sap11與Sap13實驗結果與比較 . 75
附錄B 螢光光譜NIR-PL強度/NBE-PL強度 ............ 81

參考文獻 ..................................... 87

[1] D. C. Oh, T. Kato, H. Goto, S. H. Park, T. Hanada, T. Yao, and J. J. Kim.”Comparative study of photoluminescences for Zn-polar and O-polar faces ofsinglecrystallineZnO bulks” Applied Physics Letters 93, 241907 (2008).
[2] Huaiyi Ding, Zhi Zhao, Guanghui Zhang, Yukun Wu, Zhiwei Gao, Junwen Li, Kun Zhang, Nan Pan,*and Xiaoping Wang.”Oxygen Vacancy: An Electron−Phonon Interaction Decoupler toModulate the Near-Band-Edge Emission of ZnO Nanorods”Phys. Chem. C 2012, 116, 17294−17299.
[3] Lijun Wang and N. C. Giles.” Temperature dependence of the free-exciton transition energy in zinc oxide byphotoluminescence excitation spectroscopy”Journal of Applied Physics 94, 973 (2003).
[4] S. S. Kurbanov,G. N. Panin, T. W. Kim, and T. W. Kang.”Impact of visible light illumination on ultraviolet emission from ZnO nanocrystals”PHYSICAL REVIEW B 78, 045311 (2008).
[5] H. Y. Shih, Y. T. Chen, N. H. Huang, C. M. Wei, and Y. F. Chen.”Tunable photoluminescence and photoconductivity in ZnO one-dimensionalnanostructures with a second below-gap beam” Journal of Applied Physics 109, 103523 (2011).
[6] Zhong-guo Li, Jun-yi Yang, Tai-Huei Wei, and Ying-lin Song.”Intensive two-photon absorption induced decay pathway in a ZnO crystal: Impact oflight-induced defect state”Applied Physics Letters 103, 252107 (2013).
[7] Claus F. Klingshirn, Bruno K. Meyer, AndreasWaag, Axel Hoffmann, Jean Geurts.”Zinc Oxide” Springer Series inmaterials science. Chapter2 : p.7~35.
[8] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang.” Photoluminescence: Principles, Structure,and Applications”奈米通訊12卷2期 (2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔