|
[1] P. Arena, L. Fortuna, M. Frasca, and C. Marchese. Multi-template approach to artificial locomotion control. In Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on, volume 3, pages 37--40. IEEE, 2001. [2] J.-C. Ban. Neural network equations and symbolic dynamics. International Journal of Machine Learning and Cybernetics, pages 1--13, 2014. [3] J.-C. Ban and C.-H. Chang. On the monotonicity of entropy for multilayer cellular neural networks. International Journal of Bifurcation and Chaos, 19(11):3657--3670, 2009. [4] J.-C. Ban and C.-H. Chang. Inhomogeneous lattice dynamical systems and the boundary effect. Boundary Value Problems, 2013(1):249, 2013. [5] J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 6. Macmillan London, 1976. [6] J. Cao and J. Liang. Boundedness and stability for cohen--grossberg neural network with time-varying delays. Journal of Mathematical Analysis and Applications, 296(2):665--685, 2004. [7] S.-N. Chow, J. Mallet-Paret, and E. S. Van Vleck. Pattern formation and spatial chaos in spatially discrete evolution equations. Random and Computational Dynamics, 4(2):109--178, 1996. [8] L. O. Chua. Cnn: A paradigm for complexity. World Scientific Series on Nonlinear Science, Series A, 26:529--838, 1999. [9] L. O. Chua and L. Yang. Cellular neural networks: Applications. Circuits and Systems, IEEE Transactions on, 35(10):1273--1290, 1988. [10] L. O. Chua and L. Yang. Cellular neural networks: Theory. Circuits and Systems, IEEE Transactions on, 35(10):1257--1272, 1988. [11] G. Costantini, D. Casali, and M. Carota. A pattern classification method based on a space-variant cnn template. In Cellular Neural Networks and Their Applications, 2006. CNNA'06. 10th International Workshop on, pages 1--5. IEEE, 2006. [12] M. Doebeli, C. Hauert, and T. Killingback. The evolutionary origin of cooperators and defectors. Science, 306(5697):859--862, 2004. [13] M. Doebeli and T. Killingback. Metapopulation dynamics with quasi-local competition. The Oretical Population Biology, 64(4):397--416, 2003. [14] M. Einsiedler and T. Ward. Ergodic theory: with a view towards number theory, volume 259. Springer Science & Business Media, 2010. [15] A.-H. Fan, L. Liao, and J.-H. Ma. Level sets of multiple ergodic averages. Monatshefte für mathematik, 168(1):17--26, 2012. [16] M. Fekete. Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten. Mathematische Zeitschrift, 17(1):228--249, 1923. [17] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of szemerédi on arithmetic progressions. Journal d'Analyse Mathématique, 31(1):204--256, 1977. [18] H. Harrer and J. A. Nossek. Skeletonization: A new application for discretetime cellular neural networks using time-variant templates. In Circuits and Systems, 1992. ISCAS'92. Proceedings., 1992 IEEE International Symposium on, volume 6, pages 2897--2900. IEEE, 1992. [19] C. Hauert and M. Doebeli. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428(6983):643--646, 2004. [20] C.-H. Hsu, J. Juang, S.-S. Lin, and W.-W. Lin. Cellular neural networks: Local patterns for general templates. International Journal of Bifurcation and Chaos, 10(07):1645--1659, 2000. [21] L.-H. Jian. On the positive topological entropy of inhomogeneous cellular neural networks. Master's thesis, National Dong Hwa University, 2015. [22] J. Juang and S.-S. Lin. Cellular neural networks: Mosaic pattern and spatial chaos. SIAM Journal on Applied Mathematics, 60(3):891--915, 2000. [23] T. Killingback, G. Loftus, and B. Sundaram. Competitively coupled maps and spatial pattern formation. Physical Review E, 87(2):022902, 2013. [24] H. Kim, H. Son, T. Roska, and L. O. Chua. Optimal path finding with spaceand time-variant metric weights via multi-layer cnn. International journal of circuit theory and applications, 30(2-3):247--270, 2002. [25] B. Kitchens. Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Springer, 1998. [26] Y. Li. Existence and stability of periodic solutions for cohen--grossberg neural networks with multiple delays. Chaos, Solitons & Fractals, 20(3):459-- 466, 2004. [27] S.-S. Lin and T.-S. Yang. Spatial entropy of one-dimensional cellular neural network. International Journal of Bifurcation and Chaos, 10(09):2129-- 2140, 2000. [28] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995. [29] C. Robinson. Dynamical systems: stability, symbolic dynamics, and chaos, volume 28. CRC press Boca Raton, FL, 1999. [30] T. Roska and L. O. Chua. Cellular neural networks with nonlinear and delaytype template elements. In Cellular Neural Networks and their Applications, 1990. CNNA-90 Proceedings., 1990 IEEE International Workshop on, pages 12--25. IEEE, 1990. [31] C.-Y. Wu and C.-H. Cheng. A learnable cellular neural network structure with ratio memory for image processing. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 49(12):1713--1723, 2002. [32] M. Yokozawa, Y. Kubota, and T. Hara. Effects of competition mode on spatial pattern dynamics in plant communities. Ecological Modelling, 106(1):1- -16, 1998. [33] M. Yokozawa, Y. Kubota, and T. Hara. Effects of competition mode on the spatial pattern dynamics of wave regeneration in subalpine tree stands. Ecological Modelling, 118(1):73--86, 1999. [34] K.-W. Zheng. On the existence of topological entropy of inhomogeneous cellular neural networks. Master's thesis, National Dong Hwa University, 2015.
|