(3.235.11.178) 您好!臺灣時間:2021/02/26 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡遠文
研究生(外文):Yuan-Wen Hu
論文名稱:非同質細胞神經網路的零熵問題
論文名稱(外文):On the zero topological entropy of inhomogeneous cellular neural networks
指導教授:班榮超
指導教授(外文):Jung-Chao Ban
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:27
中文關鍵詞:非同質細胞神經網路
外文關鍵詞:Entropyinhomogeneous cellular neural networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究非同質細胞神經網路系統的複雜性(拓樸熵)。具體來說,我們給出在非同質細胞神經網路系統中零熵的充分條件,並在最後一個章節提供了具體的例子以驗證本文。
In this investigation we study the complexity (topological entropy) for a inhomogeneous cellular neural networks. More precisely, some sufficient conditions are given to ensure zero topological entropy for such a system. Concrete example is presented in final section.
1 Introduction 1
2 Preliminary 5
2.1 Shift space, graph and entropy . . . . . . . . . . . . 5
3 Inhomogeneous shift space 12
3.1 Result . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Example 19
Reference 20
[1] P. Arena, L. Fortuna, M. Frasca, and C. Marchese. Multi-template approach
to artificial locomotion control. In Circuits and Systems, 2001. ISCAS 2001.
The 2001 IEEE International Symposium on, volume 3, pages 37--40. IEEE,
2001.
[2] J.-C. Ban. Neural network equations and symbolic dynamics. International
Journal of Machine Learning and Cybernetics, pages 1--13, 2014.
[3] J.-C. Ban and C.-H. Chang. On the monotonicity of entropy for multilayer
cellular neural networks. International Journal of Bifurcation and Chaos,
19(11):3657--3670, 2009.
[4] J.-C. Ban and C.-H. Chang. Inhomogeneous lattice dynamical systems and
the boundary effect. Boundary Value Problems, 2013(1):249, 2013.
[5] J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 6.
Macmillan London, 1976.
[6] J. Cao and J. Liang. Boundedness and stability for cohen--grossberg neural
network with time-varying delays. Journal of Mathematical Analysis and
Applications, 296(2):665--685, 2004.
[7] S.-N. Chow, J. Mallet-Paret, and E. S. Van Vleck. Pattern formation and
spatial chaos in spatially discrete evolution equations. Random and Computational
Dynamics, 4(2):109--178, 1996.
[8] L. O. Chua. Cnn: A paradigm for complexity. World Scientific Series on
Nonlinear Science, Series A, 26:529--838, 1999.
[9] L. O. Chua and L. Yang. Cellular neural networks: Applications. Circuits
and Systems, IEEE Transactions on, 35(10):1273--1290, 1988.
[10] L. O. Chua and L. Yang. Cellular neural networks: Theory. Circuits and
Systems, IEEE Transactions on, 35(10):1257--1272, 1988.
[11] G. Costantini, D. Casali, and M. Carota. A pattern classification method
based on a space-variant cnn template. In Cellular Neural Networks and
Their Applications, 2006. CNNA'06. 10th International Workshop on, pages
1--5. IEEE, 2006.
[12] M. Doebeli, C. Hauert, and T. Killingback. The evolutionary origin of cooperators
and defectors. Science, 306(5697):859--862, 2004.
[13] M. Doebeli and T. Killingback. Metapopulation dynamics with quasi-local
competition. The Oretical Population Biology, 64(4):397--416, 2003.
[14] M. Einsiedler and T. Ward. Ergodic theory: with a view towards number
theory, volume 259. Springer Science & Business Media, 2010.
[15] A.-H. Fan, L. Liao, and J.-H. Ma. Level sets of multiple ergodic averages.
Monatshefte für mathematik, 168(1):17--26, 2012.
[16] M. Fekete. Über die verteilung der wurzeln bei gewissen algebraischen
gleichungen mit ganzzahligen koeffizienten. Mathematische Zeitschrift,
17(1):228--249, 1923.
[17] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of
szemerédi on arithmetic progressions. Journal d'Analyse Mathématique,
31(1):204--256, 1977.
[18] H. Harrer and J. A. Nossek. Skeletonization: A new application for discretetime
cellular neural networks using time-variant templates. In Circuits and
Systems, 1992. ISCAS'92. Proceedings., 1992 IEEE International Symposium
on, volume 6, pages 2897--2900. IEEE, 1992.
[19] C. Hauert and M. Doebeli. Spatial structure often inhibits the evolution of
cooperation in the snowdrift game. Nature, 428(6983):643--646, 2004.
[20] C.-H. Hsu, J. Juang, S.-S. Lin, and W.-W. Lin. Cellular neural networks:
Local patterns for general templates. International Journal of Bifurcation
and Chaos, 10(07):1645--1659, 2000.
[21] L.-H. Jian. On the positive topological entropy of inhomogeneous cellular
neural networks. Master's thesis, National Dong Hwa University, 2015.
[22] J. Juang and S.-S. Lin. Cellular neural networks: Mosaic pattern and spatial
chaos. SIAM Journal on Applied Mathematics, 60(3):891--915, 2000.
[23] T. Killingback, G. Loftus, and B. Sundaram. Competitively coupled maps
and spatial pattern formation. Physical Review E, 87(2):022902, 2013.
[24] H. Kim, H. Son, T. Roska, and L. O. Chua. Optimal path finding with spaceand
time-variant metric weights via multi-layer cnn. International journal of
circuit theory and applications, 30(2-3):247--270, 2002.
[25] B. Kitchens. Symbolic dynamics: one-sided, two-sided and countable state
Markov shifts. Springer, 1998.
[26] Y. Li. Existence and stability of periodic solutions for cohen--grossberg neural
networks with multiple delays. Chaos, Solitons & Fractals, 20(3):459--
466, 2004.
[27] S.-S. Lin and T.-S. Yang. Spatial entropy of one-dimensional cellular neural
network. International Journal of Bifurcation and Chaos, 10(09):2129--
2140, 2000.
[28] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.
[29] C. Robinson. Dynamical systems: stability, symbolic dynamics, and chaos,
volume 28. CRC press Boca Raton, FL, 1999.
[30] T. Roska and L. O. Chua. Cellular neural networks with nonlinear and delaytype
template elements. In Cellular Neural Networks and their Applications,
1990. CNNA-90 Proceedings., 1990 IEEE International Workshop on, pages
12--25. IEEE, 1990.
[31] C.-Y. Wu and C.-H. Cheng. A learnable cellular neural network structure with
ratio memory for image processing. Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on, 49(12):1713--1723, 2002.
[32] M. Yokozawa, Y. Kubota, and T. Hara. Effects of competition mode on spatial
pattern dynamics in plant communities. Ecological Modelling, 106(1):1-
-16, 1998.
[33] M. Yokozawa, Y. Kubota, and T. Hara. Effects of competition mode on
the spatial pattern dynamics of wave regeneration in subalpine tree stands.
Ecological Modelling, 118(1):73--86, 1999.
[34] K.-W. Zheng. On the existence of topological entropy of inhomogeneous
cellular neural networks. Master's thesis, National Dong Hwa University,
2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔